# Double Higgs production in ATLAS

Seminar at the University of Birmingham

December 12<sup>th</sup> 2018

Agni Bethani

## In this talk...

- Double Higgs production
  - SM
  - BSM
  - At the LHC
- Searches in ATLAS
  - Channels included in the combination
- Combined result
- Prospects in HL-LHC

• Not in this talk:

- more production mechanisms (VBF, ttHH etc)
- Searches in CMS
- Channels not included in the combination
- Prospects beyond HL-LHC

If I missed your favourite topic, let's discuss at the end!

# Double Higgs production in the Standard Model (SM)

- Higgs potential:  $V(\varphi) = -\frac{1}{2}\mu^2\varphi^2 + \frac{1}{4}\lambda\varphi^4$
- Expand around the vacuum expectation value:  $V(\varphi) \rightarrow V(v+h)$



# Double Higgs production in the Standard Model (SM)

- Higgs potential:  $V(\varphi) = -\frac{1}{2}\mu^2\varphi^2 + \frac{1}{4}\lambda\varphi^4$
- Expand around the vacuum expectation value:  $V(\varphi) \rightarrow V(v+h)$



# Double Higgs production at the LHC

 At the LHC dominant production mechanism for SM double Higgs production is gluon fusion

lee

t, b

t, b

t, b

- The "box" and "triangle" diagrams interact destructively
- SM cross-section very small !! ~40 fb

t, b

h

t, b

t, b

t, b

• (~1000 times smaller than single Higgs production)



h ,

# Double Higgs production at the LHC (2)

- Beyond the standard model
  - resonant production
  - KK graviton G predicted in the Randal-Sundrum model
  - 2HDM (the heavy neutral scalar H)
- Non resonant BSM enhancements
  - Activating tthh vertex, altering  $\lambda_{\text{HHH}}$





# The ATLAS detector

 One of the experiments along the Large Hadron Collider in the Geneva (p-p collisions)



# The ATLAS detector

- One of the experiments along the Large Hadron Collider in the Geneva (p-p collisions)
- b-jets are really important for Higgs physics due to the large BR, H->bb BR 0.6
- information from the inner tracker are used to identify b-jets



# b-tagging in ATLAS JHEP 08 (2018) 89

ATLAS is using multivariate "b-tagging" algorithms, such as MV2c10



The analyses use 70%-85% efficiency (In HH mostly 70%)



## HH decays

bbbb: the highest branching fraction, large multijet background

bbττ: relatively large branching fraction, cleaner final state

|    | bb    | ww    | π      | ZZ     | γγ      |
|----|-------|-------|--------|--------|---------|
| bb | 33%   |       |        |        |         |
| WW | 25%   | 4.6%  |        |        |         |
| π  | 7.4%  | 2.5%  | 0.39%  |        |         |
| ZZ | 3.1%  | 1.2%  | 0.34%  | 0.076% |         |
| γγ | 0.26% | 0.10% | 0.029% | 0.013% | 0.0053% |

WWbb,WWWW and WWγγ also studied!

bbyy: small branching fraction, clean signal extraction due to the narrow  $h \rightarrow \gamma\gamma$  mass peak

# bbττ final states

- 2 channels
  - $\tau_h \tau_{e/\mu}$  branching ratio 23%
  - $\tau_h \tau_h$  branching ratio 42%
- Final states with 2 b-tagged jets
- Signal hypotheses
  - Non-resonant production (e.g. SM)
  - Resonant production Mass points 260 GeV- 1TeV Benchmark scenarios:
    - 2HDM heavy scalar
    - Spin 2 Randall-Sundrum graviton (RSG)



# bbττ analysis strategy

- Main background processes for  $\tau_h \tau_{e/\mu}$  and  $\tau_h \tau_h$ 
  - ttbar
  - QCD
  - Z+bb,cc or bc
  - jets faking  $\tau_h$
- Use fake factor (FF) method for the fake τ background (jet -> τ)
  - FF is the ratio of the number of fake- $\tau_h$  that pass the  $\tau$  identification to the number that fail
  - contribution from multiple processes  $FF_{comb} = FF_{QCD} * R_{QCD} + FF_{ttbar/W+jets} * (1-R_{QCD})$
  - $R_{\text{QCD}}$  is the fraction of fake-  $\tau_{h}$  that comes from QCD multijets
  - 1 and 3 track decays treated separately
  - The FF are estimated in control regions.
    - Inverse  $\tau_h$  identification selection in  $\tau_h \tau_{e/\mu}$
    - Region where the  $\tau$  decay products have the same charge and inverse isolation selection in  $\tau_h\tau_h$



https://arxiv.org/pdf/1808.00336.pdf



# bbττ Boosted Decision Trees (BDTs)

- Using BDTs, a multivariate method for signal and background discrimination
- Trained especially for different resonant masses.
- The  $\tau_h \tau_h$  channel is trained against all major backgrounds. The  $\tau_h \tau_l$  channel is trained only against ttbar

| Variable                                                       | $	au_{ m lep}	au_{ m had}$ channel (SLT resonant) | $	au_{\text{lep}} 	au_{\text{had}}$ channel<br>(SLT non-resonant & LTT) | $	au_{ m had}	au_{ m had}$ channel |  |
|----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|--|
| m <sub>HH</sub>                                                | $\checkmark$                                      | $\checkmark$                                                            | $\checkmark$                       |  |
| $m_{\tau\tau}^{\rm MMC}$                                       | $\checkmark$                                      | $\checkmark$                                                            | $\checkmark$                       |  |
| $m_{bb}$                                                       | $\checkmark$                                      | $\checkmark$                                                            | $\checkmark$                       |  |
| $\Delta R(\tau,\tau)$                                          | $\checkmark$                                      | $\checkmark$                                                            | $\checkmark$                       |  |
| $\Delta R(b,b)$                                                | $\checkmark$                                      | $\checkmark$                                                            | $\checkmark$                       |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$                               | $\checkmark$                                      |                                                                         |                                    |  |
| $E_{\rm T}^{\rm miss}\phi$ centrality                          | $\checkmark$                                      |                                                                         | $\checkmark$                       |  |
| $m_{\mathrm{T}}^{W}$                                           | $\checkmark$                                      | $\checkmark$                                                            |                                    |  |
| $\Delta \phi(H,H)$                                             | $\checkmark$                                      |                                                                         |                                    |  |
| $\Delta p_{\mathrm{T}}(\mathrm{lep}, \tau_{\mathrm{had-vis}})$ | $\checkmark$                                      |                                                                         |                                    |  |
| Sub-leading $b$ -jet $p_{\rm T}$                               | $\checkmark$                                      |                                                                         |                                    |  |



NR signal

**RSG** signal

- The BDT scores are used as the final discriminant for every channel and signal.
- NO CUT is applied on the BDT score.





### bbττ results

|                            |                                          | Observed | $-1\sigma$ | Expected | $+1\sigma$ |
|----------------------------|------------------------------------------|----------|------------|----------|------------|
| $	au_{ m lep}	au_{ m had}$ | $\sigma(HH \rightarrow bb\tau\tau)$ [fb] | 57       | 49.9       | 69       | 96         |
|                            | $\sigma/\sigma_{ m SM}$                  | 23.5     | 20.5       | 28.4     | 39.5       |
| $	au_{ m had}	au_{ m had}$ | $\sigma(HH \rightarrow bb\tau\tau)$ [fb] | 40.0     | 30.6       | 42.4     | 59         |
|                            | $\sigma/\sigma_{ m SM}$                  | 16.4     | 12.5       | 17.4     | 24.2       |
| Combination                | $\sigma(HH \rightarrow bb\tau\tau)$ [fb] | 20.0     | 26.0       | 26.1     | 50         |
|                            | $\sigma/\sigma_{ m SM}$                  | 12.7     | 10.7       | 14.8     | 20.6       |

The non-resonant result is: observed (expected) 12.7 (14.8) xSM prediction

This is the best single channel limit in HH production in the world, ever!

Comparable with the CMS combined result;)



# bbbb final states

#### https://arxiv.org/pdf/1804.06174.pdf

- Resolved
- Reconstruct 4 b-jets Final discriminator m<sub>4i</sub>
- Signal hypotheses
  - non-resonant
  - Resonant signal m<sub>x</sub> 260-1400 GeV



- Boosted
- Cannot resolve the 2 b-jets Final discriminator m<sub>ii</sub>
- Categories : 2, 3, 4 b-tags
   (2-tags: b from a different Jet)
- Signal hypotheses
  - Resonant signal m<sub>x</sub> 800-3000 GeV



# bbbb: Resolved analysis

- 3 possible combinationscombinatoric background
  - Need the combination most consistent with a HH topology
  - Select hh pair that has the minimal distance to the diagonal line.

i.e. minimise  $D_{HH}$ 

• In simulation, this leads to at least 90% correct pairings



# bbbb: Resolved analysis

control region

side band

**Event selection** 

$$X_{HH} = \sqrt{\left(\frac{m_{2j}^{\text{lead}} - 120 \text{ GeV}}{0.1m_{2j}^{\text{lead}}}\right)^2 + \left(\frac{m_{2j}^{\text{subl}} - 110 \text{ GeV}}{0.1m_{2j}^{\text{subl}}}\right)^2} < 1.6$$

مر 180<sup>7</sup> [GeV]

160

140

120

100

80

ATLAS

√s = 13 TeV, 24.3 fb<sup>-1</sup>

Resolved, 2016

#### **QCD** multi-jets

- Use 2-tag sample for shape template
- Weights are applied, estimated in the side band and validated in the control region

#### ttbar

Signal region Shape from simulation

#### Normalisation from fit in sidebands



# bbbb: boosted analysis

• The cut X<sub>HH</sub> becomes:

$$X_{HH} = \sqrt{\left(\frac{m_{\rm J}^{\rm lead} - 124 \text{ GeV}}{0.1 m_{\rm J}^{\rm lead}}\right)^2 + \left(\frac{m_{\rm J}^{\rm subl} - 115 \text{ GeV}}{0.1 m_{\rm J}^{\rm subl}}\right)^2} < 1.6,$$

- Shape of multijets using events with less b-tags. (e.g. 2 b-tag category using 1 b-tag events)
- ttbar from simulation
- Normalisation from side band



### bbbb discriminants



## bbbb results

#### Non-resonant limits on $\sigma/\sigma_{SM}$





# bbyy final state

- 2 photons and jets
- Exploiting 2 b-jet and 1 b-jet categories
  - Additional categories (loose and tight) based on jet  $p_{\rm T}$
- Non-resonant and resonant signal search
- Resonant mass range 260-1000 GeV



#### https://arxiv.org/pdf/1807.04873.pdf

# bbγγ

- Backgrounds:
  - continuum multi-jet
  - multi-photon (gg, gj, jj, w/ j->g, etc.)
  - Single Higgs: ttH, ZH, ggH

GeV

Events / 2.5

Data – Bkg

Double

- Reweight MC to data in o b-tag region
- Background modeling: exponential + doublesided crystal ball
- Signal modeling: double sided crystal ball



# bbyy results

Non-resonant: Final discriminant  $m_{\gamma\gamma}$  with  $m_{bb}$ =125GeV

#### Non-resonant limits on $\sigma/\sigma_{SM}$

|                                    | Observed | Expected | $-1\sigma$ | $+1\sigma$ |
|------------------------------------|----------|----------|------------|------------|
| $\sigma_{gg \to HH} \ [pb]$        | 0.73     | 0.93     | 0.66       | 1.4        |
| As a multiple of $\sigma_{\rm SM}$ | 22       | 28       | 20         | 40         |

### Resonant: Final discriminant $m_{\gamma\gamma jj}$ with $m_{\gamma\gamma} = m_{bb} = 125 GeV$



# WWbb, WWyy and WW

- Non included in the combination
- Will become interesting with more data (and energy in the future!)
- Fresh results!
- WWbb <u>https://arxiv.org/abs/1811.04671</u>
  - 300 (exp. 300) x  $\sigma_{\text{SM}}$
- WWγγ https://arxiv.org/abs/1807.08567
  - 230(exp. 160) x σ<sub>SM</sub>
- WWWW on the way too!



# ATLAS combined result

ATLAS-CONF-2018-043

bbττ, bbbb and bbγγ

## HH combination

- bbbb,  $bb\tau\tau$ ,  $bb\gamma\gamma$  are included in the combination.
- integrated luminosity of 36.1 fb<sup>-1</sup>
- The combination is realised by constructing a combined likelihood function that takes into account data, models and systematic uncertainties
- All the signal regions considered are orthogonal, or have negligible overlap.
- Instrumental and luminosity uncertainties correlated across the channels.
- The acceptance and the background modeling uncertainties are treated as uncorrelated.
- Theoretical uncertainties on the total signal cross-section are not considered.

# HH combined result for non-resonant production



# Varying the Higgs coupling

- Using scale factors:  $\kappa_t = g_{ttH} / g_{ttH}^{SM}$  and  $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$
- $A(\kappa_t, \kappa_\lambda) = \kappa^2 t B + \kappa_t \kappa_\lambda T$

We consider  $k_t=1$  (i.e. Higgs-top coupling set to its SM value)



# Constraints on $\kappa_{\lambda}$

- 4b bbττ bbγγ combination
- dashed: expected solid: observed
- Observed (expected) constraints on scale factor  $\kappa_{\lambda}$ : -5.0 <  $\kappa_{\lambda}$  < 12.1 (-5.8 <  $\kappa_{\lambda}$  < 12.0)



## Combined CMS result

<u>CMS-PAS-HIG-17-030</u>

Combined limit on  $\sigma / \sigma^{SM}$ **Observed : 22.2 Expected : 12.8** 



# HH combined result for resonant production



### HL-LHC prospects

#### • bbbb and bbγγ published in ATLAS PIXEL TDR (CERN-LHCC-2017-021)



## bbbb at HL-LHC

- extrapolation of the Run-2 result:  $L = 24.3 \rightarrow L = 3000 \text{ fb}-1$
- Signal and background distributions scaled by f = L<sub>ltarget</sub>/L<sub>lcurrent</sub>
- Background distributions scaled by 1.18 to account for an increase in cross-section
- Normalizations fixed to the best Run-2 fit values
- Pixel TDR detector layout → improved b-tagging performance (8% per b-jet)



# bbbb analysis

- "Resolved" analysis method used (not boosted reconstruction of four jets)
- Background:
   ~ 95% multijet and ~ 5% ttbar
- Extrapolation of the 95% C.L. exclusion limit: without systematics: σ/σ<sub>SM</sub>=1.5 with current level of systematics: σ/σ<sub>SM</sub>=5.2





## bbbb results

No systematics



Current systematics

without systematics: 0.2 <  $\lambda_{hhh}/\lambda_{hhh}^{SM}$  < 7.0 with systematics: -3.5 <  $\lambda_{hhh}/\lambda_{hhh}^{SM}$  < 11.0

# bbγγ at HL-LHC

- Study based on  $\sqrt{\sigma}$  = 14 TeV Monte Carlo simulations
- The final state particles at truth level are smeared according to the expected detector resolutions assuming a pile-up scenario with 200 overlapping events (<  $\mu$  >= 200).
- The expected efficiencies and fake rates for identifying b-jets and photons are used.
- Upgrade performance functions provide parameterized estimates of ATLAS performance for HL-LHC (resolution, efficiencies, fake rates)

# bbyy results

- processes with multiple jets and photons
- Continuum background (exponential) subtracted
- Fit performed on  $m_{\gamma\gamma}$  distribution
- Signal and single Higgs background modeled as Gaussians

Expected sensitivity is no systematics **1.5σ** Higgs boson self-coupling constrained: no systematics: -**0.2**<λ<sub>HHH</sub>/λ<sub>HHH</sub><sup>SM</sup><**6.9** 



# Summary and outlook

- ATLAS provides the best limit on HH production cross-section!  $\sigma/\sigma^{SM} < 6.7$  (expected 10.4)
- $bb\tau\tau$ , bbbb and  $bb\gamma\gamma$  contribute to the combination
- $bb\tau\tau$  is the most sensitive channel providing alone:  $\sigma/\sigma^{SM}<12.7$  (expected 14.8)
- The CMS combined result is  $\sigma/\sigma^{SM}$ <22.5 (expected 12.8)
- New results on more channels WWbb, WWγγ and soon WWWW
- HL-prospects studies performed on bbbb and bbγγ (and bbττ and combined but not public yet. Stay tuned!)
- More channels and production mechanisms to be included for the end of Run2 analyses (~ about a year's time)
- Future colliders will come into play later, with a rich Higgs physics program too!

Thank you for your attention

# Backup material

# Missing Mass Calculator (MMC)

- $\bullet$  Algorithm developed for  $\tau$  decays that involve neutrinos
- The algorithm assumes that the missing energy is entirely due to neutrinos and performs a scan on the angles between the neutrino and the visible tau decay products.
- Each solution is weighted according to probability density functions that are derived from simulated  $\tau$  decays.

