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• Soft condensed matter (SCM) 
 

• Astrophysics 
 

• Photonics & Semiconductor devices - Advanced Technology institute (ATI) - 
in collaboration with electronic engineering  
 

• Centre for nuclear and radiation physics (CNRP) 

Experimental & Theoretical Nuclear Physics 

 
Medical and Radiation Physics 

Medical Physics & Imaging 
 
Radiation Detector development 

2 academics and  approx. 12 research students 

Part of he Faculty of Engineering and Physical Sciences (FEPS) 

Department of Physics  ~ 30 academics 
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Talk outline 

•  Basic semiconductor detector operation 
 
• Advantages of wide band gap semiconductors – Low Z 
Radiation hard materials SiC/D 
 

• (General) Effects of Radiation damage on semiconductor 
detector operation 
 

• Quantifying “radiation hardness” 
 

• Identifying created defects 
 

• Conclusion – Future work 
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Signal formation  

The current signal is induced by the movement of the created 
charge carriers: the current is proportional to 
• the number of carriers           lifetime τ > transit time TR 

• the charge carrier velocity             mobility μ, electric field 
strength 
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Wide band gap semiconductor materials 

for room temperature radiation detector 

application 

Application areas 
 

• High energy and nuclear physics 
• Neutron detection & monitoring in nuclear 
industry 
• High energy X- and γ-ray detection for medical 
and security applications 
• Photon science/Synchrotron instrumentation 
• Medical dosimetry 
• High fluence backgrounds and harsh 
environments 
• .... 

http://www.ptw.de/diamond_detector0.html 
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Commercially  
available PTW chambers   
based on natural 
diamonds 
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Two main groups of materials studied 

CdxZn1-xTe 

http://www.contech.com/Mer

curic_Iodide_Detectors.htm 

HgI2 & TlBr 

High Z material for X/  

spectroscopy and imaging 

CdTe    CdZnTe 

   HgI2   TlBr 

Diamond    SiC 

   polymers 

Radiation hardness/ 

Tissue “equivalent” 

 Neutron detection, TOF 

Birefringence pattern 
diamond 3

 m
m

 

3 mm 
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Diamond & SiC for sensor applications 

Large heat conductance 

Low Z (low absorption) 

Tissue equivalence*  

Wide band gap (solar blind) 

Fast charge transport * 

Tissue equivalence* 

(Radiation) hardness  

 

(s)LHC 

 (X-ray) Dosimetry 

Beam monitor 

Neutron detection UV sensor 

* stronger advantage in diamond compared to SiC 



Attractive properties for detector 

applications (II) 
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1 μs  bunches of 109 of 208Pb67+ 
ions  (400 MeV/u =83.2 GeV).  
=> Stable signal (in the order of 
Ampere) 

80 μm thick pc CVD diamond 
detector with  Al contact  
 

Large band gap 

“solar blind” (UV detection) 

 (low intrinsic leakage currents) 

high temperature operation 

Resiliance 

 Chemically inert 

 Radiation hardness 

Large heat conductance (5 x copper) 

J. Bol et al., phys. stat. sol. (a) 204, 9, 
pp. 2997-3003 (2007) 



Challenges in the material synthesis 
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Columnar growth 

increasing grain size 

towards the top 

Common defects 
Impurities, Vacancies, 

Interstitials 
Dislocations  

Grain boundaries 
Stacking faults 

Polytype inclusions 1 to 10 

μm h-1  

Diamond is meta-stable: 

• High Temperature/High Pressure 

(HP/HT) limited volume, purity 

 

•Chemical vapour deposition (CVD) 

• Heteroepitaxy (typically polycrystalline 

– large area possible) 

Diamond on Iridium might be able 

to provide sufficiently thick, 

homogenous large areas in the 

future 

• Homoepitaxy (typically < 1 cm2 area) 

Several polytypes of SiC exist 

• Physical Vapour Transport 

(bulk – single crystal)  

 

•   Chemical vapour deposition 

(CVD) 

 



SiC – thick  (350 m)  “bulk” material 
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Bryant et al, IEEE TNS 60(2), pp. 1432 – 1435, 2013 



Non-uniform response in polycrystallline 

material 
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abstract
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Electronic grade single crystal detector 

performance 

Energy resolution similar 

to Silicon 
Time resolution, time of flight: 

28 ps 

See Figure 8 and 9 in M. Pomorski et al. phys. stat. sol. (a) 203 (12), pp. 

3152-3160 (2006) DOI: 10.1002/pssa.200671127 

See Figure 22 in M.Ciobanu, IEEE  TNS  58 (4), pp. 2073-2083 (2011) 

DOI:10.1109/TNS.2011.2160282 

http://dx.doi.org/10.1109/TNS.2011.2160282
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Towards large area single crystals 

Images from E. Berdermanet al, 3rd Carat Workshop at GSI, Dec 2011 

Heteroepitaxial growth on 

Iridium – large area 

substrates possible 

Main European player: M. 

Schreck et al in 

Augsburg/Germany 

 

Continuously improvement in 

thickness, quality and area with time 

For illustrations see: 

 

http://www-

carat.gsi.de/CARAT03/CARAT03Talks/B

erdermann_CARAT03.pdf 

 

Slide 4 and 14 

http://www-carat.gsi.de/CARAT03/CARAT03Talks/Berdermann_CARAT03.pdf
http://www-carat.gsi.de/CARAT03/CARAT03Talks/Berdermann_CARAT03.pdf
http://www-carat.gsi.de/CARAT03/CARAT03Talks/Berdermann_CARAT03.pdf
http://www-carat.gsi.de/CARAT03/CARAT03Talks/Berdermann_CARAT03.pdf
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Towards more radiation hardness 

Images from B. Caylar et al, 1st Adamas Workshop at GSI, Dec 2012 

Several groups have demonstrated 

working devices: 

 

Full CCE reached at very low applied 

bias (operate detectors with a 9V 

battery is possible) 

For illustrations used see: 

 

http://www-adamas.gsi.de/ADAMAS01/talks/caylar.pdf 

 

Slide 5 and 19 

http://www-adamas.gsi.de/ADAMAS01/talks/caylar.pdf
http://www-adamas.gsi.de/ADAMAS01/talks/caylar.pdf
http://www-adamas.gsi.de/ADAMAS01/talks/caylar.pdf
http://www-adamas.gsi.de/ADAMAS01/talks/caylar.pdf
http://www-adamas.gsi.de/ADAMAS01/talks/caylar.pdf


SiC – excellent Schottky diodes for 

Spectroscopy have been demonstrated 

Figure 2 in Ruddy et al, Nucl. Instr. Meth. B 263 (2007) 163-168  

doi:10.1016/j.nimb.2007.04.077 
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http://dx.doi.org/10.1016/j.nimb.2007.04.077


High Temperature spectroscopy in 

epitaxial SiC Schottky diodes developed 

by RD50) 
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Alpha emission energy 

spectrum broad with average 

energy at 5 MeV 

 

(Due to encapsulation of source to 

be safe to use at elevated 

Temperature) 

Figure 1 inC. Manfredotti et al., Nucl. 

Instrum. Meth. A 552 (2005) 131–137 

doi:10.1016/j.nima.2005.06.018 

http://dx.doi.org/10.1016/j.nima.2005.06.018


High Temperature spectroscopy in SiC 
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High Temperature spectroscopy in SiC 
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Stability tests under  fast neutron and gamma irradition at room 

temperature show of epitaxial and bulk SiC samples also show good 

stability at 4.5 to 18.5 mSv/hour (AmBe Source, Co-60) 
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Energy transfer to the 

lattice atoms moves them 

from a substitutional to an 

interstitial site: 

 

 Creation of [ V – Ci ] 

(Frenkel pair) 

4 fold 

Dissociation and diffusion then 

can lead to many more defect  

Complexes…… 

  

EK =60 keV 

Creation of defects due to irradiation 

Annealing can change the defect 

types and concentrations further  

International Journal of Modern Physics C 9, p1x 

1998, D. Saada, J. Adler, and R. Kalish 

K. Schmetzer, The Journal of 

Gemmology / 2010 / Volume 32 / 

No. 1–4 
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Effect of damage on electrical properties 

… changes the type/concentration of defects present in the material 

and hence introduces/removes energy levels in the band gap 

  heen  In the absence of any dopants: ne = nh = n 

EC 

EV 

- - 

- • “Close” to EC / EV: 

Dopants 

 

•  Near “mid gap”: 

      Recombination centres 
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Effect of damage on electrical properties 

… changes the type/concentration of defects present in the material 

and hence introduces/removes energy levels in the band gap 
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exp

Nc, density of 

states in the 

conduction band  

~ 1019cm-3 

Large EG gives lower dark currents, 

but experimentally “intrinsic” leakage 

current dominated by free carriers 

from defect states in the band gap 

Leakage current:: 

 
In an “ideal” intrinsic semiconductor, free 

charge carrier density is given by 
EC 

EV 

- - 

- 
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Effect of damage on electrical properties 

  heen  In the absence of any dopants: ne = nh = n 

 

• increase leakage  

• increase in effective doping 

 

• reduce leakage 

• Compensation (reduction in doping) 

• Reduction in carrier life time (recombination)  

Signal acquisition: 

 

• Reduction in free carrier lifetime – possibly reduced signal 

• Trapping/De-trapping – “slower” signal 

• Reduction in active thickness (depletion thickness depends on doping in 

diodes)  



Polarisation a contact problem? 

CCE [%] 

 25          53          77          110 

(a) 0 to 20 % of the data file (b) 80 to 100 % of the data file (c) 

+110 V 

CCE [%] 
40 60 80 100 

Counts 

0 

1000 
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0 to 10 % 

10 to 20 % 

20 to 30 % 

30 to 40 % 

40 to 50 % 

50 to 60 % 

60 to 70 % 

70 to 80 % 

80 to 90 % 

90 to 100 % 

+110 V, hole 

sensitive 

Inconsistencies as a function of contacting method also 

observed by W. DeFerme, Hasselt Diamond Workshop 2009 
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Surface and temporary effects: 

- “temporary” changes in space charge distribution (polarisation) 

 - increase in number of occupied traps – increase in lifetime (priming)  
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The challenge of quantifying radiation 

hardness for detector applications 

The NIEL concept – assumes  displacement damage cross- section D 

(MeV mb) – assumes that lifetime scales with # displacements 

Figure 4 De Boer, phys. stat. sol. (a) 204, No. 9, 

3004–3010 (2007)  

DOI: 10.1002/pssa.200776327 

Seems to work for 

protons/neutrons  

> 0.1 GeV 

Damaging radiation 

and probing radiation 

penetrate through the 

device thickness. 

(26 MeV H+/ 20 MeV n/ 

MIPs) 

Signal halves after 

p: 4.5 (1.5)x1014 

cm-2 

n: 1.3 (3)x1015 cm-2 
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The challenge of quantifying radiation 

hardness for detector applications 

What if the damaging/probing radiation does not penetrate the whole device? 

abstract
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A. Lohstroh et al, phys. stat. sol. (a) 2008, 205(9); p.2211-2215   

SRIM calculation [11,12]
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The challenge of quantifying radiation 

hardness for detector applications 

What if the damaging/probing radiation does not penetrate the whole device? 

abstract
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A. Lohstroh et al, phys. stat. sol. (a) 2008, 205(9); p.2211-2215   

Damaged area not visible in Raman spectra 

CCE [%] 
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TOF/TCT measurements … 
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1 1012 cm-2 

2 1013 cm-2 

0 cm-2 

0 = (1600  100) cm2 V-1 s-1 

vsat = (1.20  0.05) V cm-1 

… confirms that damage does not have a strong effect on mobility 

compared to lifetime (in Diamond) 

S. Gkoumas, PhD thesis, 

University of Surrey 2012   



Page 29                                                                                       

Introducing  a “corrected” Damage factor 

Z. Pastuovic et al, Proc. of SPIE Vol. 8725 87251A-1 

 

Figure 4,5, 6 

 

doi:10.1117/12.2015541 

• Assume that trapping probability increases linearly with radiation fluence 

 

• Take into account damage profile  (e.g. SRIM or other code) 

 

• Ionisation profile of probing radiation (e.g. SRIM or other code) 

Works well for 

“low level 

damage in 

Silicon” 

 

=> Needs to be 

demonstrated in 

wider range of 

materials 

IAEA  (CRP: F11016-CR-2) 



Identifying defect levels that affect the 

detector signal 
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• DLTS not useful for high resistivity 
 

• PICTS light source/limited time scale 
 

• Luminescence not quantitative/ 

cannot see non-radiative defects 
 

• Optical absorption detection 

limits/sample size 
 

• EPR sample size, only sensitive to 

paramagnetic 
 

• PAS sample size 
 

• … 

Defect characterisation in semiconductors Direct observation of damaged 

detector signals 

IAEA  (CRP: F11016-CR-2) 

Proton damaged p-

type Si Schottky 

diodes 



TL – after annealing 
20 Gy pre-irradiation – 313 K to 650 K, 10 K/s 
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1  1012 n cm-2:  0.5 eV  

  0.6 eV 

  1.7 eV  

  0.7 eV 

 

2  1013 n cm-2:  0.6 eV  

  0.6 eV 

  1.8 eV  

  0.6 eV 

 

1  1016 n cm-2:  0.6 eV  

  0.6 eV 

  0.8 eV  

  0.9 eV 

B: 2  1012 n cm-2 

 

(A has similar shape) 

In pc: 1.8 to 1.9 eV observed by  Gonon et al. (APL 70 (1997) 2996-2998) and  

    Benabdesselam et al. (DRM 10 (2001) 2084-2091) 

    (substitutional Nitrogen?) 
S. Gkoumas, PhD thesis, 

University of Surrey 2012   



CL – before annealing 
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3H and “3.188 

eV” centre  – 

also seen in 

neutron 

irradiation study 
Almaviva et al  

JAPP 106 (2009) 

073501 

Reference for defect levels: A. M. Zaitsev, Optical Properties of 

Diamond: A Data Handbook, Springer-Verlag, Berlin – Heidelberg, 

2001 

0 cm-2 1 1012 cm-2 2 1013 cm-2 1 1016 cm-2 S. Gkoumas, PhD thesis, 

University of Surrey 2012   



CL – after annealing 
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1 1016 cm-2 1 1012 cm-2 2 1013 cm-2 



CL – summary 
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 [nm] 

 

E [eV] 

 

0 

ncm-2 

 A:  

1  1012 

ncm-2 

B:  

2  1013 

ncm-2 

C:  

1  1016  

ncm-2 

235 5.29     

305 4.07 

389 3.19 

425 2.92   ()  () 

470 2.64   

503 2.47  

533 2.33   

575 2.16     

741 1.67 ()  

Free Exiton 
 

5RL - self interstitial or L band 
 

Known as damage signature  
 

Band A - dislocations 
 

TR12 
 

3H - interstitial 
 

N-related 
 

[N-V]0 
 

GR1 (single neutral vacancy) 
 

            Before annealing    After annealing 
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Conclusion 

•  Estimating the operational lifetime of detectors needs 
more understanding of the effects of radiation induced 
damage on their characteristics – including self annealing 
 
•  In wide band gap semiconductors, separating 
priming/polarisation and structural damage is challenging 
 

•  “Radiation hardness” as a material property 
independent of radiation and probe is not trivial 
 

• Improving our understanding of hardness and defect 
characteristic with the help of IAEA coordinated research 
programme  
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Thank you! 

Questions? 


