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List of unsolved problems in physics

From Wikipedia, the free encyclopedia

Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem
are experimental, meaning that there is a difficulty in creating an experiment to test a proposed theory

There are still some deficiencies in the Standard Model of physics, such as the origin of mass, the strc
matter and dark energy.["! Another problem lies within the mathematical framework of the Standard M
that one or both theories break down under certain conditions (for example within known spacetime si
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Mysteries of physics

Cosmology and general relativity [edit]

Problem of time
How can time be reconciled with general relativity?
Cosmic inflation
Is the theory of cosmic inflation correct, and, if so, what are the details of this epoch? What is the hypothetical inflaton field giving rise to inflation? If inflation happ
sustaining through inflation of quantum-mechanical fluctuations, and thus angoing in some extremely distant place?!
Horizon problem
Why is the distant universe so homogeneous when the Big Bang theory seems to predict larger measurable anisofropies of the night sky than those observed? C
generally accepted as the solution, but are other possible explanations such as a variable speed of light more appropriate?[!7]
Origin and future of the universe
How did the conditions for anything fo exist arise? Is the universe heading towards a Big Freeze, a Big Rip, a Big Crunch, or a Big Bounce? Or is it part of an infin
Size of universe

Baryon asymmetry
Why is there more matter than antimatter in the observable universe?

i ——— o ———
What is the identity of dark matter'?[m Is it a particle? Is it the lightest superpartner (LSP)? [Cr] Do the phenomena attributed to dark matter point
not to some form of matter but actually to an extension of gravity?

Dark energy
What is the cause of the observed accelerated expansion (de Sitter phase) of the universe? Why is the energy density of the dark energy
component of the same magnitude as the density of matter at present when the two evolve quite differently over time; could it be simply that we
are observing at exactly the right time? Is dark energy a pure cosmological constant or are models of quintessence such as phantom energy
applicable?

Dark flow
15 a non-spherically symmetric gravitational pull from outside the observable universe responsible for some of the observed motion of large
objects such as galactic clusters in the universe?

Ecliptic alignment of CMB anisotropy ——
stimate 15

Some large features of the microwave sky at distances of aver 13 billion light years appear to be aligned with both the motion and orientation of dark energy ir

the solar system. Is this due to systematic errors in processing, contamination of results by local effects, or an unexplained violation of the
Copernican principle?
Shape of the universe
What is the 3-manifold of comoving space, i.e. of a comoving spatial section of the universe, informally called the "shape" of the universe? Neither the curvature n



Breaking P and T symmetry :T)gg';';"' College
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eEDM limits over time
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Beyond standard model and the eEDM

10 Tev/c® 100 Tev/c?
experimentally excluded unconstrained
ACME 2013

1 Standard Model
W SUSY variants
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Imperial: Nature 473 493 (2011), ACME: Science 343 269 (2014), JILA: PRL 119 153001
Figure adapted from Ben Spaun, PhD Thesis, Harvard University, (2014).
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eEDM sensitivity to new physics

LHC (direct) EDM (assuming maximal CP-violation) = Near-future EDM

————————

| — Measured mass of heaviest SM particles

Limits on the masses of hypothetical particles. H® and H* are

h
J —————— additional neutral or charged Higgs particles, and those with a
H° I ' >
. ; I tilde are supersymmetric partners of the standard model
S H I [ > particles. Reproduced from Science 357 990-994 (2017).
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The vacuum is
complicated
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SUSY electron edm
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An EDM experiment

Polarize Precess Analyze
time T



CP from fields to particles to atoms
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nucleon

field theory electron/quark level nuclear atom/molecule
P model level level level
muon?
YbF, Cs
ThO*, HfF*
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Why polar molecules?

electric field

nd, o

system containing
electron

Interaction energy
-nd. E-o

Analogous to magnetic dipole
interaction -g 1 B.c but
violates P&T

Factor nj includes both
relativistic interaction ~Z3,
and polarization. n can be
very large!

© Imperial College London
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Relevant levels
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YbF eEDM measurement
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YbF eEDM measurement
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Polarize Precess Analyze
timeT
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magnetic shields vacuum chamber plate structure






A magnetic field scan Imperial College
London
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A magnetic field scan with E reversed

Reverse E relative to B
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e 2011 dataset: 6194 measurements (6m|n/measurement)
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J J Hudson et al. Nature 473 493-496 (2011)
D M Kara et al. New. J. Phys. 14 103051 (2012)
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. h
Photon shot noise : g4 =
e 2EqffXCXTXVN
Agrees with final error in 2011 to within 10% \
Get more molecules
Fixed by Interaction
molecule time
Contrast

(do experiment better)




More molecules

Use cycling transition to optically pump
molecules into ground rotational state.
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More molecules (better detection)

Fluorescence detection is only about 0.7% efficient

y position (mm)

40

201

=201

-40

a)

=) -
£ &
: | £ :
o g =
o 2 g
- LG =
O [72]

S g -50 g -
= 50 150 >

] + =

‘ , . ‘ “0 ) !
-50 0 50 L00 . o0 &% 20 0 0 10 20
X position (mm) ’b@ 7 905‘ X position (mm)

Probe laser beam




An interlude on laser cooling molecules

Molecules have
many levels, and |e)
we need to
scatter 10,000
photons.

&) It seems that hundreds of repump lasers
are needed.



Laser cooling molecules: Rotation

* Angular momentum J can only change by 0, 1.

* Parity of rotational state (-1)) must change from (+) < (-).

J=2 (+)
J=1 (-)
J=0 (+)
S Cool on J=1 — J=0 transition,
]=2 ° (+) P(l) line.




Improved state detection scheme

Energy

Imperial College
London
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New magnetic scan curves London
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» New detection scheme 40 000;
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Combine quadrature detectors
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10 Tev/c? 100 Tev/c?

experimentally excluded unconstrained

ACME 2013 1 Standard Model

W SUSY variants

E d eneric models TaIVIIL VL
TEIM o 2011 sensitivity:

3 —27
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Imperial 2018 (expected) sensitivity:
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Transverse cooling of YbF
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Ultracold molecules for measuring the electron's electric dipole moment

YbF source J. Lim, J. R. Aimond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R.
Tarbutt, E. A. Hinds; arXiv 1712:02868



https://arxiv.org/find/physics/1/au:+Lim_J/0/1/0/all/0/1
https://arxiv.org/find/physics/1/au:+Almond_J/0/1/0/all/0/1
https://arxiv.org/find/physics/1/au:+Trigatzis_M/0/1/0/all/0/1
https://arxiv.org/find/physics/1/au:+Devlin_J/0/1/0/all/0/1
https://arxiv.org/find/physics/1/au:+Fitch_N/0/1/0/all/0/1
https://arxiv.org/find/physics/1/au:+Sauer_B/0/1/0/all/0/1
https://arxiv.org/find/physics/1/au:+Tarbutt_M/0/1/0/all/0/1
https://arxiv.org/find/physics/1/au:+Hinds_E/0/1/0/all/0/1
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Sensitivity outlook London
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ThO*: huge internal field

Effective field E in YbF is 26 GV/cm
when molecule is fully polarized

For ThO* E_ is about 84 GV/cm (factor of
3.2 more sensitive)

3
Mostly relativistic: (ﬁj = 2.1

Yb

(also depends on structure)
ThO* can be fully polarized!



Comparing some atomic and molecular
systems

* YbF, 2011: |E | = 14.5 GV/cm (1 = 0.56)
|d.|<1.0 x 10"%” e.cm (90% c.l.)

* TI, 2002: |E ¢|= 72 MV/cm (E, = -582 E
|d.|<1.6 x 107 e.cm (90% c.l.)

* PbO*, 2013: |E | =25 GV/cm
|d.|<1.7 x 10%° e.cm (90% c.l.)

* Eu, ;Ba, <Ti0,, 2012:
|d.|<6 x 10> e.cm (90% c.l.)

* ThO*: |E| = 84 GV/cm (factor of 6 on 2011 YbF)
|d.|<8.7 x 10%° e.cm (90% c.l.)

appﬁed)



