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1 Introduction

The Standard-Model (SM) value of the muon anomaly can be calculated with sub-parts-
per-million precision. The comparison between the measured and the SM prediction
provides a test of the completeness of the Standard Model. At present, there appears
to be a three- to four-standard deviation between these two values, which has motivated
extensive theoretical and experimental work on the hadronic contributions to the muon
anomaly.

A lepton (` = e, µ, ⌧) has a magnetic moment which is along its spin, given by the
relationship

~µ` = g`
Qe

2m`

~s , g` = 2| {z }
Dirac

(1 + a`), a` =
g` � 2

2
(1)

where Q = ±1, e > 0 and m` is the lepton mass. Dirac theory predicts that g ⌘ 2,
but experimentally, it is known to be greater than 2. The small number a, the anomaly,
arises from quantum fluctuations, with the largest contribution coming from the mass-
independent single-loop diagram in Fig. 1(a). With his famous calculation that obtained
a = (↵/2⇡) = 0.00116 · · · , Schwinger [1] started an “industry”, which required Aoyama,
Hayakawa, Kinoshita and Nio to calculate more than 12,000 diagrams to evaluate the
tenth-order (five loop) contribution [2].
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Figure 1: The Feynman graphs for: (a) The lowest-order (Schwinger) contribution to
the lepton anomaly ; (b) The vacuum polarization contribution, which is one of five
fourth-order, (↵/⇡)2, terms; (c) The schematic contribution of new particles X and Y
that couple to the muon.

The interaction shown in Fig. 1(a) is a chiral-changing, flavor-conserving process,
which gives it a special sensitivity to possible new physics [3, 4]. Of course heavier
particles can also contribute, as indicated by the diagram in Fig. 1(c). For example,
X = W± and Y = ⌫µ, along with X = µ and Y = Z0, are the lowest-order weak
contributions. In the Standard-Model, aµ gets measureable contributions from QED, the
strong interaction, and from the electroweak interaction,

aSM = aQED + aHad + aWeak. (2)

In this document we present the latest evaluations of the SM value of aµ, and then dis-
cuss expected improvements that will become available over the next five to seven years.
The uncertainty in this evaluation is dominated by the contribution of virtual hadrons
in loops. A worldwide e↵ort is under way to improve on these hadronic contributions.
By the time that the Fermilab muon (g � 2) experiment, E989, reports a result later
in this decade, the uncertainty should be significantly reduced. We emphasize that the
existence of E821 at Brookhaven motivated significant work over the past thirty years
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New physics could appear in loops 

Motivates study of     rather than µ e

many higher order pieces …..

flavour,CP-conserving 
chirality flipping

�anewphysics
` / m2

`

m2
X

1 TeV?

⇡ 10�8 ⇡ 10�13



CURRENT STATUS 

tantalising 3.7σ  discrepancy! details to follow …

higher accuracy small-scale experiments possible 
(Penning trap) but discrepancies will be tiny …

very hard since decays in 0.3picoseconds ….
�a⌧ = 5⇥ 10�2 (LEP) e+e� ! e+e�⌧+⌧�

aSMµ = 11659182.0(3.6)⇥ 10�10 Keshavarzi 
et al,
1802.02995



New determination of  α  (2018) : Mueller et al  (h/MCs)
Now 

�aSMe ⌘ aexpte � aSMe = �87(36)⇥ 10�14

2.4σ ‘tension’ and 
opposite sign to 
discrepancy for µ

Two g-2 anomalies

http://resonaances.blogspot.co
m/2018/06/alpha-and-g-minus-
two.html

Davoudiasl & Marciano, 
arXiv:1806.10252

Davoudiasl+Marciano,
1806.10252

potentially adds 
excitement to the story!

Aoyama, Kinoshita 
and Nio, 1712.06060 
for QED calc. 



Accurate experimental results + theory calculations needed 
Muon g-2: 

Lepton Dipole Moments 
Adam West, PIC 2015 

Ion traps unsuitable:  
Cyclotron radius = 2 m, impossible to load, require relativistic speeds (lifetime = 2 us). p ! ⇡+ ! ⌫µ + µ+ both helicity -1 in     rest frame 

so get polarised      beam pulse
⇡

µ
B field perpendicular to 
ring,     spin precessesµ

measure  
frequency  
difference 
!S � !C

spin 0

B



~!S � ~!C = �Qe

m

"
aµ ~B +

 
aµ �

✓
m

p

◆2
!

~� ⇥ ~E

c

#

Q = ±1, µ±

directly gives aµ
electric field term vanishes 
at ‘magic momentum’

+ ..

from 
possible 
EDM

/ ~� ⇥ ~B
p = 3.094GeV/c

measure spin direction from e 
produced in weak decay

µ+ ! e+ + ⌫e + ⌫µ
direction of highest energy 
correlated with     spin  so  
oscillates at 

e
µ

!S � !C

Ne

need uniform 
stable B, measure  
to sub-ppm with 
NMR  probes 
calibrated using gp



Status of experiment

NS62CH10-Roberts ARI 17 September 2012 11:40

SM Theory
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Figure 2
(a) Measurements of aµ. (b) The uncertainty on aµ and the physics reach as the uncertainty decreased.
Abbreviation: SM, Standard Model.

that aµ = (m/p)2, so the E field did not contribute to ωa .3 By measuring the frequency ωa , and
the magnetic field B⃗ calibrated to the Larmor frequency of the free proton ωp , one can determine
aµ from the relationship

aµ = ωa/ωp

λ+ − ωa/ωp
= R

λ+ − R
, 3.

where λ+ = µµ+/µp = 3.183 345 137 (85) is the muon-to-proton magnetic moment ratio (27).
Assuming CPT invariance (aµ+ = aµ− ; λ+ = λ− ), the result is (28, 29)

aE821
µ = 116 592 089(54)stat(33)syst(63)tot × 10− 11 (±0.54 ppm). 4.

The muon anomaly is one of the most precisely calculated quantities in the SM. To match
the experimental precision, it is necessary to calculate QED contributions to five loops and

3The magic momentum was first employed by the third CERN collaboration (25).

240 Miller et al.
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Muon g-2 E989

2013: E821 ring moved 
to Fermilab 

Aim: Much higher statistics with cleaner injection to ring, more 
uniform B field + temp. control : 0.15ppm  i.e        �aµ = 2⇥ 10�10

Involvement from 
Germany, Italy, UKbecomes 

E989 



Muon g-2 now running at Fermilab
Run 2018 for 1-3 x E821, first results summer 2019

2017 
commissioning run: 
0.001% of final 
stats 

Ne(t) = N0e
�t/�tµ⇥

[1 +Acos(!at+ �)]

J-PARC future plan:  
slow µ in 1m ring - no  
need for ‘magic 
momentum’

�⌧µ = 60⇥ 10�6s



Accurate experimental results + theory calculations needed 

in the small-q limit. The g − 2 term MG is projected out
from either the lhs or the rhs of Eq. (19). Considerable
numerical cancellation is expected among the nine terms on
the lhs of Eq. (19). In fact, the rhs exhibits the consequence
of such a cancellation at the algebraic level. Thus starting
from the rhs enables us to reduce the amount of computing
time substantially (by at least a factor 5), and also to
significantly improve the precision of numerical results.
Since these integrals have UV-divergent subdiagrams,

they must be regularized by some means. For the diagrams
of Set V the Feynman cutoff, which is a sort of “mass” for
the virtual photons, works fine as the regulator. We suppose
that all of the integrals, including renormalization terms, are
initially regularized by the Feynman cutoff. Of course, the
final renormalized result is finite and well defined in the
limit of infinite cutoff mass.

III. FORMULATION

Most of these diagrams are so huge and complicated that
numerical integration is currently the only viable option.
However, in order to evaluate them on a computer, which
requires that every step of the computation is finite, it is
necessary to remove all sources of divergence of an
integrand before carrying out the integration. This is
achieved by the introduction of K-operation that deals
with the UV divergences [22,47], and R-subtraction and

I-operation that deal with the IR divergences [23,47]. See
Secs. III D and III E for more details.
In practice, it is very difficult to carry out such a

calculationwithout makingmistakes because of the gigantic
size of the integrals and the large number of terms required
for renormalization. To deal with this problem, we devel-
oped an automatic code-generating algorithm, GENCODEN
[22,23], in which N implies that it works for the q-type
diagrams of any order N in the perturbation theory of QED.

A. Diagram generation

TheFeynmandiagramsof SetVhave the structure that ten
vertices along the electron line are connected by the virtual
photonsa,b, c,d, and e, and thus are specified by the pairing
patterns of how these vertices are connected. Excluding
patterns that are not one-particle irreducible, and taking
time-reversal invariance into account, we obtain 389 differ-
ent patterns which are represented by the diagrams of Fig. 1.
They are denoted by Xnnn, nnn ¼ 001; 002;…; 389.
The diagramX001 represents the diagram in the upper left

corner of Fig. 1. Subsequent expressions represent diagrams
placed belowX001 until X025, andX026 corresponds to the
diagram placed to the right of X001, and so on. Diagrams
X001 to X072 are time-reversal symmetric and diagrams
X073 to X389 are asymmetric. Within each group they are
arranged in a lexicographical order.

FIG. 1. Overview of 389 diagrams which represents 6354 vertex diagrams of Set V. The horizontal solid lines represent the electron
propagators in a constant weak magnetic field. Semicircles stand for photon propagators. The left-most figures are denoted as X001–
X025 from the top to the bottom. The top figure in the second column from the left is denoted as X026, and so on.

AOYAMA et al. PHYSICAL REVIEW D 91, 033006 (2015)

033006-4

Aoyama, Kinoshita et al
PRD91:033006(2015),
err:PRD96:019901(2017)

subset of 
diagrams at ↵5

QED corrections dominate - calculate in Perturbation theory 

For α use     or  Rb/Cs ae

Hadronic corrections to the muon g�2 from lattice QCD T. Blum

Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through a5, EW
a2, and QCD a3. The two QED values correspond to different values of a , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and t ! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (t) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of P(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.

Z

W

Z
...

Figure 1: Representative diagrams, up to order a3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.
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62. The muon anomalous magnetic moment 1

62. The Muon Anomalous Magnetic Moment

Updated August 2017 by A. Hoecker (CERN) and W.J. Marciano (BNL).

The Dirac equation predicts a muon magnetic moment, M⃗ = gµ
e

2mµ
S⃗, with

gyromagnetic ratio gµ = 2. Quantum loop effects lead to a small calculable deviation
from gµ = 2, parameterized by the anomalous magnetic moment

aµ ≡
gµ − 2

2
. (62.1)

That quantity can be accurately measured and, within the Standard Model (SM)
framework, precisely predicted. Hence, comparison of experiment and theory tests the
SM at its quantum loop level. A deviation in aexp

µ from the SM expectation would signal
effects of new physics, with current sensitivity reaching up to mass scales of O(TeV) [1,2].
For recent and thorough muon g − 2 reviews, see Refs. [3–5].

The E821 experiment at Brookhaven National Lab (BNL) studied the precession of
µ+ and µ− in a constant external magnetic field as they circulated in a confining storage
ring. It found [7] 1

aexp
µ+ = 11 659 204(6)(5)× 10−10 ,

aexp
µ− = 11 659 215(8)(3)× 10−10 , (62.2)

where the first errors are statistical and the second systematic. Assuming CPT invariance
and taking into account correlations between systematic uncertainties, one finds for their
average [6,7]

aexp
µ = 11 659 209.1(5.4)(3.3)× 10−10 . (62.3)

These results represent about a factor of 14 improvement over the classic CERN
experiments of the 1970’s [8]. Improvement of the measurement by a factor of four by
setting up the E821 storage ring at Fermilab, and utilizing a cleaner and more intense
muon beam is in progress with the commissioning of the experiment having started in
2017.

The SM prediction for aSM
µ is generally divided into three parts (see Fig. 62.1 for

representative Feynman diagrams)

aSM
µ = aQED

µ + aEW
µ + aHad

µ . (62.4)

The QED part includes all photonic and leptonic (e, µ, τ) loops starting with the classic
α/2π Schwinger contribution. It has been computed through 5 loops [9]

aQED
µ =

α

2π
+ 0.765 857 425(17)

(α

π

)2
+ 24.050 509 96(32)

(α

π

)3

+ 130.879 6(6 3)
(α

π

)4
+ 753.3(1.0)

(α

π

)5
+ · · · (62.5)

1 The original results reported by the experiment have been updated in Eqs. (62.2)
and (62.3) to the newest value for the absolute muon-to-proton magnetic ratio λ =
3.183 345 107(84) [6]. The change induced in aexp

µ with respect to the value of λ =
3.183 345 39(10) used in Ref. 7 amounts to +1.12 × 10−10.

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update
December 1, 2017 09:36

aQED
µ =   0.00116 + 0.00000413 … + 0.000000301 

  + 0.00000000381 + 0.0000000000509 + …

Hoecker+
Marciano 
RPP 2017

using Rb α
= 11,658,471.895(8) x 10-10    

uncertainty from error in α 
but missing α6 (light-by-
light) also this size



µ µ

H
W

(a)
γ

µ µ

H γ, Z

(b)
f

γ

µ µ

Z γ

(c)
f

γ

µ µ

µ µ

Z γ
f

(d)
γ

Figure 1: Sample two-loop diagrams: Higgs-dependent bosonic (a) and
fermionic (b) diagram, diagram with γγZ-fermion triangle (c) and γ–Z mixing
(d).

The Standard Model electroweak contributions are split up into one-loop,
two-loop and higher orders as

aEWµ = aEW(1)
µ + aEW(2)

µ;bos + aEW(2)
µ;ferm + aEW(≥3)

µ , (7)

where the two-loop contributions are further split into bosonic and fermionic
contributions, as discussed below.

The one-loop contribution is given by [4, 5]3

aEW(1)
µ =

GF√
2

m2
µ

8π2

[

5

3
+

1

3
(1− 4s2W )2

]

= (194.80 ± 0.01) × 10−11, (8)

where s2W = 1 − M2
W /M2

Z is the square of the weak mixing angle in the on-
shell renormalization scheme. One-loop contributions suppressed by m2

µ/M
2
Z or

m2
µ/M

2
H are smaller than 10−13 and hence neglected here. The parametrization

in terms of GF already absorbs important higher-order contributions. The error
in Eq. (8) is due to the uncertainty of the input parameters, in particular of
the W-boson mass.

Before discussing higher-order contributions we briefly explain possible
parametrizations in terms of GF and α. The one-loop contribution in Eq. (8)
has been parametrized in terms of GF . Generally, n-loop contributions are
proportional to GF α(n−1), and it is possible to reparametrize α in terms of
other quantities. Possibilities are to replace α by a running α at the scale
of the muon mass or the Z-boson mass, or to replace α → α(GF ), where
α(GF ) ≡

√
2GF s2WM2

W /π = α× (1+∆r). The quantity ∆r summarizes radia-
tive corrections to muon decay. Different choices amount to differences which
are formally of the order n+1. We will always choose α in the Thomson limit,
i.e. given by Eq. (5b).

We now turn to the first set of contributions with noticeable dependence

on the Higgs boson mass: the bosonic two-loop contributions aEW(2)
µ;bos . They

are defined by two-loop and associated counterterm diagrams without a closed
fermion loop, see Fig. 1(a) for a sample diagram. They are conceptually

3 In the literature sometimes the experimental value for MW instead of the theory value is
used. If we would use the current value of MW = 80.385± 0.015 GeV [17] instead of Eq. (6),

the result would be shifted to a
EW(1)
µ = (194.81 ± 0.01) × 10−11.
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a2, and QCD a3. The two QED values correspond to different values of a , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and t ! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (t) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of P(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.
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Figure 1: Representative diagrams, up to order a3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.

3

Electroweak contributions from Z, W, H

aEW
µ

H ⌫

is small - suppressed by powers of m2
µ

m2
W

Gnendiger 
et al,
1306.5546
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2 8⇡2


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Figure 5: Numerical result for aEWµ as a function of the Higgs boson mass. The
vertical band indicates the measured value of MH . The dashed lines correspond
to the uncertainty of the final result, quoted in Eq. (25).

parametrization at the two-loop level. We provide exact numerical results for
the full bosonic and the Higgs-dependent fermionic two-loop contributions, for
the latter also analytical results. These results are supplemented by updates
of the most advanced available results on all other electroweak contributions.
Our final result obtained from Eqs. (8), (9), (19), (21), (22), (23), (24) reads

aEWµ = (153.6 ± 1.0)× 10−11 (25)

and is illustrated in Fig. 5. We assess the final theory error of these contribu-
tions to be ±1.0 × 10−11. This is the same value as the one given in Ref. [14]
for the overall hadronic uncertainty from the diagrams of Fig. 1(c), which is
now by far the dominant source of error of the electroweak contributions. The
error from unknown three-loop contributions and neglected two-loop terms sup-
pressed by M2

Z/m
2
t and (1− 4s2W ) is significantly smaller and the error due to

the experimental uncertainty of the Higgs boson, W-boson, and top-quark mass
is well below 10−12 and thus negligible.

Our result is consistent with the previous evaluations of the elec-
troweak contributions in Refs. [4, 5, 14], whose central values range between
(153 . . . 154) × 10−11, but the large uncertainty due to the unknown Higgs bo-
son mass has been reduced. In comparison, the recent 5-loop calculation [6] has
shifted the QED result by +0.8×10−11. We can now combine Eq. (25) and the
result of Ref. [6] with the hadronic contributions. We take the recent leading
order evaluations of Refs. [7] and [8] and the higher order results of Refs. [8,11].
The resulting difference between the experimental result Eq. (1) and the full
Standard Model prediction is:

aexpµ − aSMµ =

{

(287 ± 80)× 10−11 [7],

(261 ± 80)× 10−11 [8].
(26)

The Standard Model theory error remains dominated by the non-
electroweak hadronic contributions. The QED and electroweak contributions
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aEW(2)
µ = �4.12(10)⇥ 10�10

H piece tiny 
at 1-loop; 
2-loops

aEW
µ = 15.36(10)⇥ 10�10



QCD contributions to       start at α2 , nonpert. in QCD
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Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through a5, EW
a2, and QCD a3. The two QED values correspond to different values of a , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and t ! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (t) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of P(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.
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Figure 1: Representative diagrams, up to order a3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.
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aµ

LO Hadronic vacuum 
polarisation (HVP) 
dominates uncertainty 
in SM result

Higher order Hadronic 
vacuum polarisation 
(HOHVP) 

� `q

Hadronic light-
by-light, not well 
known but small

Since QED, EW known accurately, subtract from expt and 
compare QCD calculations to remainder 

Blum et al, 
1301.2607

aE821
µ = 11659209.1(6.3)⇥ 10�10

aQED
µ = 11658471.895(8)⇥ 10�10 aEW

µ = 15.36(10)⇥ 10�10



= aHV P
µ + aHOHV P

µ + aHLBL
µ + anew physics

µ

Hadronic (and other) contributions = EXPT - QED - EW

Focus on lowest order hadronic vacuum polarisation (HVP),  
so take: 

aHLbL

µ
= 10.5(2.6)⇥ 10�10

aHOHV P
µ = �8.85(9)⇥ 10�10 NLO+NNLO

Kurz et al, 
1403.6400

aE821
µ � aQED

µ � aEW
µ = 721.9(6.3)⇥ 10�10

“consensus” value 
will return to this

aHVP,no new physics
µ = 720.2(6.8)⇥ 10�10

aEW
µNote: much  larger than 



How to calculate            - Two approaches: aHVP

µ

1)                                           + dispersion relations.�(e+e� ! hadrons)

2) lattice QCD     -    “first principles”  

1)

Leading order of hadronic 
contribution (HVP)�

!  Hadronic vacuum polarization (HVP) 
                
 
  quark’s EM current :  

!  Optical Theorem  
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Dispersion relations and VP insertions in g � 2
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� Optical Theorem (unitarity) for the photon propagator
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s
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� Analyticity (causality), may be expressed in form of a so–called (subtracted)
dispersion relation
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at high s. 
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(a) Fractional contributions to ahad,LOVP

µ .

(b) Fractional contributions to �↵(5)

had
(M2

Z)

Figure 20: Pie charts showing the fractional contributions to the total mean value (left pie chart) and

(error)2 (right pie chart) of both ahad,LOVP
µ (upper panel) and �↵(5)

had
(M2

Z) (lower panel) from various

energy intervals. The energy intervals for ahad,LOVP
µ are defined by the boundaries m⇡, 0.6, 0.9, 1.43,

2.0 and 1 GeV. For �↵(5)

had
(M2

Z), the intervals are defined by the energy boundaries m⇡, 0.6, 0.9, 1.43,
2.0, 4.0, 11.2 and 1 GeV. In both cases, the (error)2 includes all experimental uncertainties (including
all available correlations) and local �2

min
/d.o.f. inflation. The fractional contribution to the (error)2 from

the radiative correction uncertainties are shown in black and indicated by ‘rad.’.

analysis is

ahad,LOVP

µ = (693.26± 1.19stat ± 2.01sys ± 0.22vp ± 0.71fsr)⇥ 10�10

= (693.26± 2.46tot)⇥ 10�10 , (3.28)

where the uncertainties include all available correlations and local �2 inflation as discussed in
Section 2.2.2. Using the same data compilation as described for the calculation of ahad,LOVP

µ ,

the next-to-leading order (NLO) contribution to ahad,VP
µ is determined here to be

ahad,NLOVP

µ = (�9.82± 0.02stat ± 0.03sys ± 0.01vp ± 0.02fsr)⇥ 10�10

= (�9.82± 0.04tot)⇥ 10�10 . (3.29)
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Need to combine multiple sets of experimental data from 
many hadronic channels (+ inclusive) inc. correlations
New data sets from KLOE, BESIII, SND(Novosibirsk) ..

New results 
p
sKeshavarzi, Nomura, Teubner 
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70% redn in uncty since 2011. 
New data, more channels, correlations

KNT18

aHVP

µ = 693.1(3.4)⇥ 10�10Davier et al, 
1706.09436
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0.4% uncty 
3.5σ from no 
new physics. aHVP

µ = 688.8(3.4)⇥ 10�10Jegerlehner 
1705.00263

aHV P
µ = 693.3(2.5)⇥ 10�10



2) Lattice QCD 
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Lattice QCD: fields defined on 4-d 
discrete space-(Euclidean) time. 
Lagrangian parameters: 
1) Generate sets of gluon fields for 
Monte Carlo integrn of Path Integral 
(inc effect of u, d, s, (c) sea quarks)
2) Calculate valence quark propagators 
and combine for “hadron correlators” .  
Average results over gluon fields. Fit 
for hadron masses and amplitudes
• Determine     to convert results in 
lattice units to  physical units. Fix        
from hadron mass

a
mq

a
• cost increases as               
and with statistics, volume.

*numerically extremely challenging*

↵s,mqa

a ! 0,mu/d ! phys



Using Darwin@Cambridge,  

Inversion of  107 x 107  sparse 
matrix solves the Dirac equation 
for the quark propagator on a 
given gluon field configuration. 
Must repeat thousands of times 
for statistical precision. 

Allows us to calculate 
quark propagators 
rapidly and store them 
for flexible re-use.

www.dirac.ac.uk

http://www.dirac.ac.uk


‘2nd generation’ gluon field configs generated by MILC 
including HPQCD’s HISQ sea quarks. 
Physical u/d quark masses now possible. 

real 
world

mass of u,d 
quarks

Volume:

mu,d ⇡ ms/10

mu,d ⇡ ms/27

u/d (same mass), s 
and c sea quarks

m⇡L > 3

HISQ = Highly 
improved 
staggered quarks -
very accurate 
discretisation 
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E.Follana, et al, 
HPQCD, hep-lat/
0610092.
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53.0

53.5

54.0

54.5

55.0

as µ
⇥

10
10

‘connected’ s quark contribution to Chakraborty et al, 
HPQCD 1403.1778

HISQ quarks on configs 
with u, d, s and c sea. 
Local Jv - nonpert. Zv.
multiple a (fixed by w0), 
ml (inc. phys.), volumes. 
Tune s from ⌘s

5

TABLE II: Columns 2-5 give the Taylor coe�cients ⇧j (Eq. 6), in units of 1/GeV2j , for each of the lattice data sets in Table I.
The errors given include statistics and the (correlated) uncertainty from setting the lattice spacing using w0, which dominates.
Estimates of the connected contribution from s-quarks to aµ,HVP are given for each of the [1, 0], [1, 1], [2, 1] and [2, 2] Padé
approximants in columns 6-9; results are multiplied by 1010.

Set ⇧1 ⇧2 ⇧3 ⇧4 [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

1 0.06598(76) �0.0516(11) 0.0450(15) �0.0403(19) 58.11(67) 53.80(59) 53.95(59) 53.90(59)
2 0.06648(75) �0.0523(11) 0.0458(15) �0.0408(18) 58.55(66) 54.19(58) 54.33(59) 54.29(59)
3 0.06618(75) �0.0523(11) 0.0466(15) �0.0425(20) 58.28(66) 53.93(58) 54.09(58) 54.04(58)
4 0.06614(74) �0.0523(11) 0.0467(15) �0.0427(19) 58.25(65) 53.90(57) 54.06(58) 54.01(57)
5 0.06626(74) �0.0527(11) 0.0473(15) �0.0438(19) 58.36(65) 53.99(57) 54.15(57) 54.10(57)
6 0.06829(77) �0.0557(12) 0.0514(17) �0.0490(22) 60.14(67) 55.55(59) 55.73(59) 55.67(59)
7 0.06619(74) �0.0524(11) 0.0468(15) �0.0430(19) 58.29(65) 53.93(57) 54.10(57) 54.05(57)
8 0.06625(74) �0.0526(11) 0.0470(15) �0.0429(19) 58.34(65) 53.98(57) 54.14(57) 54.09(57)
9 0.06616(77) �0.0531(12) 0.0483(17) �0.0450(22) 58.27(68) 53.87(59) 54.04(60) 53.99(59)
10 0.06630(72) �0.0534(11) 0.0487(16) �0.0458(20) 58.39(64) 53.98(56) 54.15(56) 54.10(56)

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.

as
µ ac

µ

Uncertainty in lattice spacing (w0, r1): 0.4% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a2 ! 0 extrapolation: 0.1% 0.4%

QED corrections: 0.1% 0.3%
Quark mass tuning: 0.4% 0.4%

Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 0.7% 2.7%

mistuning of the sea and valence light-quark bare masses:

�xsea ⌘

X

q=u,d,s

msea

q � mphys

q

mphys

s

(10)

�xs ⌘
mval

s � mphys

s

mphys

s

. (11)

For our lattices with physical u/d sea masses �xsea is very
small. a2 errors from staggered ‘taste-changing’ e↵ects
will remain and they are handled by ca2 . The four fit
parameters are a2

µ, ca2 , csea and cval; we use the following
(broad) Gaussian priors for each:

as
µ = 0 ± 100 ⇥ 10�10

ca2 = 0(1) csea = 0(1) cval = 0(1). (12)

Our final result for the connected contribution for
s quarks to g � 2 is:

as
µ = 53.41(59) ⇥ 10�10. (13)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a �2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with ms/m` equal 5
and with the physical mass ratio.

FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: mlat

` = ms/5 (lower, blue points), and mlat

` = mphys

`
(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = �0.020(6) and cval = �0.61(4).
The gray band shows our final result, 53.41(59)⇥10�10, with
mlat

` = mphys

` , after extrapolation to a = 0.

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

The error budget for our result is given in Table III.
The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-

aHV P,s

µ
= 53.4(4)⇥ 10�10

allowing for missing QED

50 51 52 53 54 55 56 57 58

aHVP,s
µ ⇥1010

BMW 1711.04980

ETMC 1411.0705

HPQCD 1403.1778

RBC/UKQCD 1606.01767

u,d,s,c sea

u,d,s sea

Re+e� <⇡ 55⇥ 10�10

aHV P
µ
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Set mca
⇣

GV
4

Z2a2

⌘1/2 ⇣
GV

6
Z2a4

⌘1/4 ⇣
GV

8
Z2a6

⌘1/6 ⇣
GV

10
Z2a8

⌘1/8

1 0.622 0.5399(1) 1.2162(1) 1.7732(1) 2.2780(1)
2 0.63 0.5339(1) 1.2054(1) 1.7581(1) 2.2584(1)
2 0.66 0.5135(1) 1.1692(1) 1.7081(1) 2.1941(1)
3 0.617 0.5434(1) 1.2223(1) 1.7817(1) 2.2888(1)
4 0.413 0.7586(1) 1.6351(1) 2.3887(2) 3.0952(2)
5 0.273 1.0681(1) 2.2705(2) 3.3454(3) 4.3601(4)
6 0.193 1.4323(3) 3.0397(5) 4.4990(7) 5.8738(8)

TABLE IV: Results in lattice units for time moments of the
J/⇤ correlator as defined in eq. (10). We give results for n=4,
6, 8 and 10.

(GV
4 )1/2 (GV

6 )1/4 (GV
8 )1/6 (GV

10)
1/8

(amc)
2 extrapolation 0.18 0.18 0.16 0.16

statistics 0.05 0.04 0.03 0.03
lattice spacing 0.32 0.51 0.43 0.30
sea quark extrapolation 0.14 0.13 0.12 0.12
M�c tuning 0.15 0.18 0.17 0.16
Z 1.23 0.61 0.41 0.31
electromagnetism 0.3 0.2 0.1 0.05
Total (%) 1.3 0.9 0.7 0.5

TABLE V: Complete error budget for the time moments of
the J/⇤ correlator as a percentage of the final answer.

Re+e� = ⌃(e+e� � hadrons)/⌃pt [22, 23]. The values,
extracted from experiment by [22] and appropriately nor-
malised for the comparison to ours, are:

(M exp
1 4!/(12⇧2e2c))

1/2 = 0.3142(22)GeV�1

(M exp
2 6!/(12⇧2e2c))

1/4 = 0.6727(30)GeV�1

(M exp
3 8!/(12⇧2e2c))

1/6 = 1.0008(34)GeV�1

(M exp
4 10!/(12⇧2e2c))

1/8 = 1.3088(35)GeV�1. (12)

Our results from lattice QCD have approximately double
the error of the experimental values but together these
results provide a further test of QCD to better than 1.5%.

C. �(J/⇤ � �⇥c)

The radiative decay of the J/⌥ meson to the ⌅c re-
quires the emission of a photon from either the charm
quark or antiquark and a spin-flip, so it is an M1 transi-
tion. Because it is sensitive to relativistic corrections this
rate is hard to predict in nonrelativistic e⇥ective theories
and potential models (see, for example, [24, 25]) Here
we use a fully relativistic method in lattice QCD with
a nonperturbatively determined current renormalisation
and so none of these issues apply. In addition, of course,
the lattice QCD result is free from model-dependence.
The quantity that parameterises the nonperturbative

QCD information (akin to the decay constant of the pre-
vious section) is the vector form factor, V (q2), where q2

is the square of the 4-momentum transfer from J/⌥ to
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FIG. 4: Results for the 4th, 6th, 8th and 10th time moments
of the charmonium vector correlator shown as blue points and
plotted as a function of lattice spacing. The errors shown (the
same size or smaller than the points) include (and are domi-
nated by) uncertainties from the determination of the current
renormalization factor, Z, that are correlated between the
points. The data points have been corrected for c quark mass
mistuning and sea quark mass e⇥ects, but the corrections are
smaller than the error bars (the value for the deliberately
mistuned c mass on set 2 is not shown). The blue dashed
line with grey error band displays our continuum/chiral fit.
Experimental results determined from Re+e� (eq. (12)) are
plotted as the black points at the origin o⇥set slightly from
the y-axis for clarity.

⌅c. The form factor is related to the matrix element of
the vector current between the two mesons by:

⇥⌅c(p⇥)|c⇥µc|J/⌥(p)⇤ = 2V (q2)

(MJ/⌃ +M⌅c)
�µ�⇥⇤p⇥�p⇥⇤J/⌃,⇤

(13)
Note that the right-hand-side vanishes unless all the vec-
tors are in di⇥erent directions. Here we use a normalisa-
tion for V (q2) appropriate to a lattice QCD calculation
in which the vector current is inserted in one c quark line
only and the quark electric charge (2e/3) is taken as a
separate factor. The decay rate is then given by [8]:

�(J/⌥ � ⌅c⇥) = �QED
64|q|3

27(M⌅c +MJ/⌃)2
|V (0)|2, (14)

where it is the form factor at q2 = 0 that contributes be-
cause the real photon is massless. |q| is the corresponding
momentum of the ⌅c in the J/⌥ rest-frame.
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bottom case are obvious.
Below 3.73 GeV only u, d and s quarks are produced. To allow for a smooth transition
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TABLE III. Light-quark connected contribution to aHVP
µ and the slope and curvature of the renormalized vacuum polarization

before and after applying finite-volume, discretization, and M⇡ corrections.

1010all
µ(conn.) ⇧ll

1 (conn.) (GeV2) ⇧ll
2 (conn.) (GeV4)

⇡ a (fm) raw corrected raw corrected raw corrected
0.15 572(12) 624(13) 0.0814(18) 0.0916(28) �0.1250(54) �0.217(20)
0.15 570(6) 623(8) 0.08117(94) 0.0913(22) �0.1271(30) �0.216(18)
0.12 580(9) 627(10) 0.0828(14) 0.0919(24) �0.1308(45) �0.216(19)
0.09 605(9) 634(10) 0.0868(15) 0.0929(21) �0.1463(51) �0.217(17)
0.06 608(15) 629(15) 0.0871(24) 0.0915(25) �0.1438(73) �0.196(13)
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FIG. 9. (color online.) Lattice-spacing dependence of
all
µ(conn.) before (open blue circles) and after (filled dark-

pink squares) finite-volume, taste-breaking, and M⇡ correc-
tions are applied. The dark-pink line shows the fit of all
corrected data points to the function in Eq. (3.1). The hor-
izontal light-pink band shows the continuum-limit result for
all
µ(conn.) from this fit.

where �mf ⌘ mf�mphys
f , and ⇤ = 0.5 GeV is of order the

QCD scale. This is similar to the fit function employed
in Ref. [22], except that we no longer include terms to
extrapolate in the valence-quark mass because all of our
data are at the physical light-quark mass. The first term
in parentheses adjusts for small sea-quark mass mistun-
ing, while the second removes generic discretization er-
rors; we employ priors for the coe�cients cs = 0.0(3)
and ca2 = 0(1). The values of all

µ(conn.) on each en-
semble are statistically independent; we include in our
fit correlations between the two a ⇡ 0.15 fm ensembles
from using the same ZV , and between all ensembles from
the common value of w0 used to convert lattice-spacing
units to GeV. We obtain from fitting our full data set to
Eq. (3.1)

all
µ(conn.) = 630.1(8.3),

cs = 0.01(30),

ca2 = �0.50(79), (3.2)

with a �2/dof = 0.34 and p = 0.71. The fit posterior for686

cs is tiny because the sea-quark masses are well tuned,687

while ca2 is small and has a 100% uncertainty because we688

already removed the dominant taste-breaking discretiza-689

tion e↵ects from our data. Note that ca2 = �5(1) for the690

raw values in Fig. 9.691

To study the stability of the values and errors in692

Eq. (3.2), we consider a number of fit variations including693

adding higher-order terms in a2 and �mf , doubling the694

prior widths on the fit parameters, and omitting the two695

coarsest ensembles. All of the alternate fits yield results696

for all
µ(conn.) that are statistically consistent with our697

central fit. Further, the uncertainty on all
µ(conn.) does698

not change except when the prior widths are doubled; in699

this case the fit uncertainties are still only ⇠ 20% larger700

than in Eq. (3.2). Because all
µ(conn.) is robust against701

reasonable fit variations, we conclude that the fit error702

captures the systematic uncertainty associated with the703

continuum extrapolation.704

We follow the same approach for the slope and cur-705

vature of the renormalized vacuum polarization, first706

applying finite-volume and taste-breaking discretiza-707

tion corrections, and then extrapolating to the con-708

tinuum limit using Eq. (3.1). We obtain for the709

continuum-limit values ⇧ll
1 (conn.) = 0.0920(15) GeV2

710

and ⇧ll
2 (conn.) = �0.2089(82) GeV4. The p values of the711

fits are 0.83 and 0.41, respectively. The lattice-spacing712

dependence of the corrected Taylor coe�cients is even713

milder than for aµ, and cannot be statistically resolved.714

For ⇧1, we obtain ca2 = �0.12(90), which is consis-715

tent with the result from the continuum extrapolation716

of all
µ(conn.) because the quantities are proportional at717

lowest order in the Taylor expansion. For ⇧2, we obtain718

ca2 = 0.15(99), which is again consistent in magnitude,719

but is opposite in sign because ⇧2 is negative. As for720

all
µ(conn.) , the sea-quark mass dependence of ⇧1 and ⇧2721

is tiny. Finally, the continuum-limit values ⇧ll
1 (conn.)722

and ⇧ll
2 (conn.) are both stable against the fit variations723

discussed above for all
µ(conn.).724

IV. RESULTS725

Here we present our final results for all
µ(conn.), ⇧ll

1 , ⇧ll
2 ,726

and aHVP
µ (LO) and the slope and curvature of b⇧(Q2) with727

large-t correlator dominated 
by ρ but also has ππ - fit to 
constrain data

t

ππ mangled on coarse 
lattices and in finite-vol. 
Correct with chi.pt.

aHVP,u/d
µ = 630(8)⇥ 10�10

connected, mu=md, no QED



BMW(1711.04980): ~1million 
correlators per point, bound              
          from data. Large a-
dependence (handled by 
extrapolation, rather than 
correcting ).

⇡+⇡�

9

 150

 160

 170

 180

     

a
e
,u

d
L
O

-H
V

P
 x

 1
0

1
4

13.4

13.5

13.6

     

a
e
,s

L
O

-H
V

P
 x

 1
0

1
4

 2.0

 3.0

     

a
e
,c

L
O

-H
V

P
 x

 1
0

1
4

 0.0

 1.0

 2.0

 3.0

0.000 0.005 0.010 0.015 0.020

−
a

e
,d

is
c

L
O

-H
V

P
 x

 1
0

1
4

a2[fm2]

 550

 600

 650

     

a
µ

,u
d

L
O

-H
V

P
 x

 1
0

1
0

53.0

53.5

     

a
µ

,s
L
O

-H
V

P
 x

 1
0

1
0

8.0

12.0

     
a

µ
,c

L
O

-H
V

P
 x

 1
0

1
0

2.5

5.0

7.5

10.0

0.000 0.005 0.010 0.015 0.020

−
a

µ
,d

is
c

L
O

-H
V

P
 x

 1
0

1
0

a2[fm2]

 180

 190

 200

     

a
τ
,u

d
L
O

-H
V

P
 x

 1
0

8

22.0

22.5

     

a
τ
,s

L
O

-H
V

P
 x

 1
0

8

5.0

7.5

10.0

     

a
τ
,c

L
O

-H
V

P
 x

 1
0

8

 0.5

 1.0

 1.5

0.000 0.005 0.010 0.015 0.020

−
a

τ
,d

is
c

L
O

-H
V

P
 x

 1
0

8

a2[fm2]

FIG. S4. Continuum extrapolation of the various flavor contributions to a
LO-HVP
` (Q2GeV) obtained using tc = (3.000 ±

0.134) fm for the ud contribution and tc = (2.600 ± 0.134) fm for the disconnected one. From left to right, ` = e, µ, ⌧ . From
top to bottom, the connected light, strange, charm, and disconnected contributions. The red open circles with errors are the
results from our 15 simulations for the ud and s, 13 for the charm and 12 for the disconnected contributions, with statistical
uncertainties. These points have been interpolated to the physical mass point using the fits to all lattice spacings (solid lines).
The di↵erent lines represent the fits obtained by imposing cuts in a (solid for no cut, dashed for a  0.118 fm, dotted for
a  0.111 fm, dot-dashed for a  0.095 fm). The fact that a few of the lines do not appear to fit the red points is due to the
dependence on other lattice parameters in those fits, which is slightly di↵erent from the one corresponding to the solid line. The
green squares are the continuum extrapolated results for the given Qmax and tc, with statistical and continuum extrapolation
errors only.

all of these situations in the same way and discuss them
together.

For the light-quark contribution to
a
LO-HVP
` (Q2GeV), the dependence on meson masses

is not significant statistically and the terms associated
with this dependence can be ignored. However, as can be
seen in the upper panels of Fig. S4, the dependence on
a
2 is strong, due to the sensitivity of this contribution to

low-energy, two-pion states which, in turn, are sensitive
to taste splittings. The fact that the anomalous moment
of the lighter e is more sensitive to these states than
that of the µ that is, in turn, more sensitive than that
of the ⌧ , explains the fact that a

LO-HVP
e (Q2GeV) has

the strongest a
2 dependence while a

LO-HVP
⌧ (Q2GeV)

has the weakest.

The situation is di↵erent for the strange contribution,
much less a↵ected by taste violations. As the second pan-
els of Fig. S4 show, the continuum limits are very mild.
They are much less so for the charm, as shown in the
third panels, due to the large value of mc in lattice units.
Here it is the magnetic moments of the more massive lep-
tons which are steeper, due to their sensitivity to larger
Q. In addition to the dependence on a

2, a linear depen-
dence on M

2
K� is needed for both contributions and one

on M⌘c is required to correct a slight mistuning of the
charm mass in that quark’s contribution.

Our results for a
LO-HVP
`,disc,lat(Q2GeV) have large lattice

artefacts, as shown in the bottom panels of Fig. S4. This
is because the taste violations of the ud contribution en-
hance the SU(3)-flavor cancellation against the s contri-
bution in a

LO-HVP
µ,disc,lat, as a

2 is increased. In these results we
neglect the charm contribution which we find to be less
than 1% of the total disconnected contribution on our
coarsest lattice, i.e. much smaller than the disconnected,
statistical error. In addition, because statistical errors
are quite large, no dependence on quark mass is required
to describe the lattice data.

As explained in the main text, the systematic error as-
sociated with these continuum limits and physical-point
interpolations are obtained by imposing four cuts on the
lattice spacing in the quark-connected case and three for
the disconnected contributions. The results of these cuts
are then combined, as detailed in the main text, to give a
central value and statistical and systematic errors. The
results for the various contributions to the magnetic mo-
ments of all three leptons with the four values of the
momentum cut Qmax considered are summarized in Ta-
ble S2.
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FIG. S4. Continuum extrapolation of the various flavor contributions to a
LO-HVP
` (Q2GeV) obtained using tc = (3.000 ±

0.134) fm for the ud contribution and tc = (2.600 ± 0.134) fm for the disconnected one. From left to right, ` = e, µ, ⌧ . From
top to bottom, the connected light, strange, charm, and disconnected contributions. The red open circles with errors are the
results from our 15 simulations for the ud and s, 13 for the charm and 12 for the disconnected contributions, with statistical
uncertainties. These points have been interpolated to the physical mass point using the fits to all lattice spacings (solid lines).
The di↵erent lines represent the fits obtained by imposing cuts in a (solid for no cut, dashed for a  0.118 fm, dotted for
a  0.111 fm, dot-dashed for a  0.095 fm). The fact that a few of the lines do not appear to fit the red points is due to the
dependence on other lattice parameters in those fits, which is slightly di↵erent from the one corresponding to the solid line. The
green squares are the continuum extrapolated results for the given Qmax and tc, with statistical and continuum extrapolation
errors only.

all of these situations in the same way and discuss them
together.

For the light-quark contribution to
a
LO-HVP
` (Q2GeV), the dependence on meson masses

is not significant statistically and the terms associated
with this dependence can be ignored. However, as can be
seen in the upper panels of Fig. S4, the dependence on
a
2 is strong, due to the sensitivity of this contribution to

low-energy, two-pion states which, in turn, are sensitive
to taste splittings. The fact that the anomalous moment
of the lighter e is more sensitive to these states than
that of the µ that is, in turn, more sensitive than that
of the ⌧ , explains the fact that a

LO-HVP
e (Q2GeV) has

the strongest a
2 dependence while a

LO-HVP
⌧ (Q2GeV)

has the weakest.

The situation is di↵erent for the strange contribution,
much less a↵ected by taste violations. As the second pan-
els of Fig. S4 show, the continuum limits are very mild.
They are much less so for the charm, as shown in the
third panels, due to the large value of mc in lattice units.
Here it is the magnetic moments of the more massive lep-
tons which are steeper, due to their sensitivity to larger
Q. In addition to the dependence on a

2, a linear depen-
dence on M

2
K� is needed for both contributions and one

on M⌘c is required to correct a slight mistuning of the
charm mass in that quark’s contribution.

Our results for a
LO-HVP
`,disc,lat(Q2GeV) have large lattice

artefacts, as shown in the bottom panels of Fig. S4. This
is because the taste violations of the ud contribution en-
hance the SU(3)-flavor cancellation against the s contri-
bution in a

LO-HVP
µ,disc,lat, as a

2 is increased. In these results we
neglect the charm contribution which we find to be less
than 1% of the total disconnected contribution on our
coarsest lattice, i.e. much smaller than the disconnected,
statistical error. In addition, because statistical errors
are quite large, no dependence on quark mass is required
to describe the lattice data.

As explained in the main text, the systematic error as-
sociated with these continuum limits and physical-point
interpolations are obtained by imposing four cuts on the
lattice spacing in the quark-connected case and three for
the disconnected contributions. The results of these cuts
are then combined, as detailed in the main text, to give a
central value and statistical and systematic errors. The
results for the various contributions to the magnetic mo-
ments of all three leptons with the four values of the
momentum cut Qmax considered are summarized in Ta-
ble S2.

1 Estimate of the hadronic vacuum polarization disconnected contribution to
2 the anomalous magnetic moment of the muon from lattice QCD
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8 The quark-line disconnected diagram is a potentially important ingredient in lattice QCD calculations of
9 the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. It is also a

10 notoriously difficult one to evaluate. Here, for the first time, we give an estimate of this contribution based
11 on lattice QCD results that have a statistically significant signal, albeit at one value of the lattice spacing and
12 an unphysically heavy value of the u=d quark mass. We use HPQCD’s method of determining the
13 anomalous magnetic moment by reconstructing the Adler function from time moments of the current-
14 current correlator at zero spatial momentum. Our results lead to a total (including u, d and s quarks) quark-
15 line disconnected contribution to a μ of −0.15% of the u=d hadronic vacuum polarization contribution with
16 an uncertainty which is 1% of that contribution.

DOI:17

18 I. INTRODUCTION

19 The high accuracy with which the magnetic moment of
20 the muon can be determined in experiment makes it a very
21 useful quantity in the search for new physics beyond the
22 Standard Model. Its anomaly, defined as the fractional
23 difference of its gyromagnetic ratio from the naive
24 value of 2 [a μ ¼ ðg − 2Þ=2] is known to 0.5 ppm [1].
25 The anomaly arises from muon interactions with a cloud
26 of virtual particles and can therefore probe the existence of
27 particles that have not been seen directly. The theoretical
28 calculation of a μ in the Standard Model shows a discrep-
29 ancy with the experimental result of about 25ð8Þ × 10−10

30 [2–4] which could be an exciting indication of new
31 physics. Improvements by a factor of 4 in the experi-
32 mental uncertainty are expected and improvements in the
33 theoretical determination would make the discrepancy (if
34 it remains) really compelling [5].
35 The current theoretical uncertainty is dominated by that
36 from the lowest order (α2QED) hadronic vacuum polarization
37 (HVP) contribution, in which the virtual particles are
38 strongly interacting, depicted in Fig. 1. This contribution,
39 which we denote a μ;HVP, is currently determined most
40 accurately from experimental results on eþ e− → hadrons
41 or from τ decay to be of order 700 × 10−10 with a 1%
42 uncertainty or better [3,4,6]. This method for determining
43 a μ;HVP does not distinguish the two diagrams of Fig. 1
44 because it uses experimental cross-section information,

45effectively including all possibilities for final states that
46would be seen if the two diagrams were cut in half.
47a μ;HVP can also be determined from lattice QCD calcu-
48lations using a determination of the vacuum polarization
49function at Euclidean-q2 values [7]. It is important that this
50is done to at least a comparable level of uncertainty to that

F1:1FIG. 1. The hadronic vacuum polarization contribution to the
F1:2muon anomalous magnetic moment is represented as a shaded
F1:3blob inserted into the photon propagator (represented by a wavy
F1:4line) that corrects the pointlike photon-muon coupling at the top
F1:5of each diagram. The top diagram is the connected contribution
F1:6and the lower diagram the quark-line disconnected (but con-
F1:7nected by gluons denoted by curly lines) contribution that is
F1:8discussed here. The shaded box in the lower diagram indicates
F1:9strong interaction effects that could occur between the two quark

F1:10loops.
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TABLE VI. Individual flavor contributions to the leading Taylor coe�cients of the vacuum-polarization function and the muon
anomaly. The first error quoted for the u/d contributions is from the lattice analysis; the second comes from uncertainties
in our estimates of the e↵ects of strong isospin-breaking, electromagnetism, and quark disconnected diagrams. Results for
strange and heavier quarks include only the quark-connected contributions and are not new, but come from earlier HPQCD
calculations [16–18]; disconnected contributions are expected to be negligible. The definitions of the Taylor coe�cients include
the factor of the quark’s electric charge squared.

Contribution 1010aHVP
µ (LO) ⇧HVP

1 (LO)(GeV�2) ⇧HVP
2 (LO)(GeV�4)

light 623.1(8.3)(13) 0.0907(15)(19) �0.2029(82)(71)
strange 53.40(60) 0.007291(78) �0.00587(12)
charm 14.40(40) 0.001840(49) �0.0001240(43)
bottom 0.270(40) 0.0000342(48) �2.28(37)e� 07
Total 691(15) 0.0999(24) �0.209(11)
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Keshavarzi et al.
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Mainz/CLS, 1705.01775
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2019

u, d sea
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FIG. 12. (color online.) Comparison of our result in Eq. (5.1)
for the leading-order hadronic-vacuum-polarization contribu-
tion to the muon anomalous magnetic moment (magenta
square) with results from Nf � 2 lattice QCD [14, 15, 20, 50]
(blue and purple squares), and from experimental e+e� cross-
section data [5–7, 51] (red and orange triangles). The filled
black circle shows the value of aHVP,LO

µ that is implied by the
measurement of aµ by BNL experiment E821 [1] assuming
no contributions beyond the Standard Model; vertical dashed
lines denote the ±1� range [22].

the light-quark connected contribution all
µ(conn.) in1123

Eq. (5.4). The error budget (Table IV) is dominated1124

by the lattice-spacing uncertainty, statistical errors and1125

the continuum extrapolation. The last two can be re-1126

duced by increasing statistics, so that the results at each1127

lattice spacing value are more precise and the extrapo-1128

lation has more accurate information to work with. We1129

have demonstrated here that a calculation with nearly1130

0.5 million correlators (our high statistics sample at a1131

= 0.15fm) resolves issues around how to handle statisti-1132

cal uncertainties at large Euclidean times. Such a sam-1133

ple is numerically expensive to obtain on finer lattices,1134

although tripling the statistics is certainly feasible us-1135

ing the truncated solver method. We estimate that this1136

would reduce our total uncertainty to 1%. To get be-1137

low 1% requires a reduction in the uncertainty on the1138

physical value of w0 that determines the lattice spacing1139

(w0/a is determined very precisely, see Table I). This un-1140

certainty currently relies on a determination of the pion1141

decay constant, f⇡, on the lattice [36]. The error budget1142

in [36] shows that the dominant uncertainties are related1143

to statistical precision and extrapolation to the physical1144

point where w0f⇡ is fixed against experiment (assuming1145

a value of Vud from nuclear physics). An improvement by1146

a factor of two in this uncertainty seems feasible with the1147

higher statistics gluon-field ensembles now available with1148

physical mu/d on finer lattices. Analysis on QCD+QED1149

gluon field ensembles will be important in the long-term1150

here too to take into account fully the fact that that f⇡1151

is the decay constant of an electrically-charged particle.1152

Other quantities should also be investigated for fixing the1153

lattice spacing.1154

Given the above discussion, a reduction in uncertainty1155

on the lattice-QCD result for the hadronic vacuum po-1156

larization contribution to the muon g � 2 to ⇡ 0.5%1157

is certainly feasible on the timescale of the new exper-1158

iments. This would give precision comparable to that1159

currently available from using experimental information1160

on e+e� ! hadrons and would allow lattice-QCD re-1161

sults to play a significant role in the unfolding story of1162

the search for new physics in the anomalous magnetic1163

moment of the muon.1164

ACKNOWLEDGMENTS1165

We thank Bob Sugar for his scientific leadership and1166

tireless e↵ort to obtain computational resources, with-1167

out which the MILC physics program would never have1168

been realized. We thank B. Chakraborty and J. Koponen1169

for generating data employed in this analysis. We thank1170

Thom Primer for initial studies of, and parameter-tuning1171

aHVP

µ = 691(15)⇥ 10�10

add u/d, s and c: 

2% uncty from systs.

• clarify large-t 
behaviour (with  
stats and/or ππ )



Elephant in the room? hadronic light-by-light contribution
Not simply related to experiment, values obtained use 
large Nc, chiral pert. th. etc. 
‘Glasgow Consensus’ 2009: aHLbL

µ
= 10.5(2.6)⇥ 10�10

dominated by π0 exchange : 
there also OPE constraints
10% possible? with improved 
dispersive approaches (with 
imp. expt for e.g. 

Nyffeler, 1602.03398
Colangelo et al, 1702.07347

Lattice QCD calcs of  
can test these approaches 

Mainz, 
1607.08174,1712.00421

11

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

[G
eV

�
1 ]

✓ [rad]

F⇡0�⇤�⇤(q
2
1, q

2
2)

n2 = 1
n2 = 2
n2 = 3
n2 = 4
n2 = 5

n2 = 6
n2 = 8
n2 = 9
n2 = 10
n2 = 11

Figure 6. Left: Sampling of our data in the (q21 , q
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2) plane. Right: The form factor for di↵erent values of |~q1|2. For each value of
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2

2 .
Data correspond to the lattice ensemble O7.

2. Fits in four-momentum space

In this section, we propose to compare our results with the phenomenological models introduced in Sec. II. In
particular, since we are using Wilson fermions, the chiral symmetry is lost even in the chiral limit and is recovered
only once the results are extrapolated to the continuum and chiral limit. It is then important to check that our results
are in agreement with the ABJ anomaly.
On the lattice, the form factor is obtained as a continuous function of !1 for each value of the discretized spatial

momentum |~q1|2 and a typical example for the lattice ensemble F6 is depicted in Fig. 6. Therefore, to fit the form
factor, we first have to sample our data. We have selected values of !1 such that data points are regularly distributed
along each curve in the (q21 , q

2
2) plane as depicted in the left panel of Fig. 6. However, as discussed in Sec. IVC, no

significant di↵erence has been observed by using di↵erent samplings.

We first compare our data with the VMD model. Two fitting procedures have been used. In the first method, each
lattice ensemble is fitted independently using Eq. (6) with ↵ and MV treated as free parameters. Then, in a second
step, the two parameters are extrapolated to the chiral and continuum limit assuming a linear dependence in both
the lattice spacing a/a�=5.3 and ey = m2

⇡
/8⇡2F 2

⇡
. The results are summarized in Table VIII (Appendix B). In the

second fitting procedure, a global fit is performed where all lattice ensembles are fitted simultaneously assuming a
linear dependence in both a/a�=5.3 and ey for each parameter of the model. In this case, we are left with only six fit
parameters and the results are given in Table IX (Appendix B). Both methods give similar results and choosing the
second method, with a reduced number of fit parameters, as our preferred estimate, we obtain at the physical point

↵VMD = 0.243(18) GeV�1 , MVMD
V

= 0.944(34) GeV , (38)

where the covariance matrix is (in appropriate units of GeV)

�VMD
ij

(↵,MV ) =

✓
+3.16⇥ 10�4

�3.62⇥ 10�4

�3.62⇥ 10�4 +1.14⇥ 10�3

◆
. (39)

The covariance matrix is estimated from a jackknife procedure and used in Sec. V for error propagation, but the fits
are uncorrelated fits. As can be seen in Fig. 7 (top panel), the VMD model leads to a poor description of our data
(�2/d.o.f. = 2.94), especially in the double virtual case and at large Euclidean momenta. It is a direct evidence that
the wrong asymptotic behavior of this model, compared to the OPE prediction in Eq. (5), already matters at Euclidean
momenta of order Q2

⇠ 1 GeV2. In particular we do not recover the anomaly result in the chiral and continuum
limit. However, fitting our data with the constraint |Q2

i
| < 0.5 GeV2 (i = 1, 2) leads to ↵ = 0.268(21) GeV�1 and

MV = 0.870(45) GeV where ↵ is now compatible with the theoretical prediction ↵th = 0.274 GeV�1. Also, in the
latter case we get a much better chi-squared �2/d.o.f. = 1.29. It confirms that the VMD model is unable to describe
our data in the whole kinematical range studied here.

We have repeated the same analysis for the LMD model (7) using ↵, � and MV as free parameters and the results
are summarized in Tables VIII and IX (Appendix B). The first fitting procedure suggests that lattice artifacts for the
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We calculate the ⇡0 ! �⇤�⇤ transition form factor F⇡0�⇤�⇤(q21 , q
2

2) in lattice QCD with two
flavors of quarks. Our main motivation is to provide the input to calculate the ⇡0-pole contribution

to hadronic light-by-light scattering in the muon (g�2), aHLbL;⇡0

µ . We therefore focus on the region
where both photons are spacelike up to virtualities of about 1.5 GeV2, which has so far not been
experimentally accessible. Results are obtained in the continuum at the physical pion mass by a
combined extrapolation. We reproduce the prediction of the chiral anomaly for real photons with an
accuracy of about 8�9%. We also compare to various recently proposed models and find reasonable
agreement for the parameters of some of these models with their phenomenological values. Finally,

we use the parametrization of our lattice data by these models to calculate aHLbL;⇡0

µ .

I. INTRODUCTION

The anomalous magnetic moment of the muon provides one of the most precise tests of the Standard Model of
particle physics [1, 2]. It is known to comparable precision in experiment [3] and theory but the results disagree by
about 3� 4 standard deviations [4] depending on the theoretical estimate. To interpret this tension as a sign of new
physics, improving the accuracy is of primary importance. On the experimental side, new experiments at Fermilab
and J-PARC are expected to reduce the error by a factor of four [5]. Therefore, a corresponding theoretical e↵ort
is necessary to fully benefit from the increased experimental precision. The theory error of (g � 2)µ is dominated
by hadronic contributions: the hadronic vacuum polarization (HVP) and hadronic light-by-light scattering (HLbL).
The first contribution can be related to the cross section e+e� ! hadrons using a dispersion relation such that
the estimate can, in principle, be improved by accumulating more data. Also, in recent years, more and more
precise lattice QCD calculations of the HVP have become available but are not yet competitive with the dispersive
approach [6–9]. However, the HLbL contribution to the muon g � 2 cannot fully be related to direct experimental
information and current determinations usually rely on model assumptions where systematic errors are di�cult to
estimate [1, 10, 11]. However, recently a dispersive approach was proposed [12] which relates the, presumably,
numerically dominant pseudoscalar-pole contribution, as depicted in Fig. 1, and the pion loop in HLbL with on-shell
intermediate pseudoscalar states to measurable form factors and cross sections with o↵-shell photons: �⇤�⇤

! ⇡0, ⌘, ⌘0

and �⇤�⇤
! ⇡+⇡�,⇡0⇡0. Furthermore, increasingly realistic lattice calculations of the HLbL contribution to the muon

g � 2 have been carried out recently [13, 14]. Also, the hadronic light-by-light scattering amplitude per se has been
calculated on the lattice in [15].

Within the dispersive framework, the pseudoscalar-pole contribution requires as hadronic input the transition form
factor FP�⇤�⇤(q21 , q

2
2) describing the interaction of an on-shell pseudoscalar meson, P = ⇡0, ⌘, ⌘0, with two o↵-shell

⇡
⇡0 , ⌘ , ⌘0

+ . . .

Figure 1. Pseudoscalar-pole contribution to hadronic light-by-light scattering in the muon g � 2. The blobs on the right-hand
side represent the P ! �⇤�⇤ transition form factors with P = ⇡0, ⌘, ⌘0.
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The HVP contribution is the largest hadronic contri-
bution and can be computed from a dispersion relation
and experimental e+e� annihilation data. This is a well-
developed method with a fractional-percent error. The
leading-order HVP contribution is 692.3(4.2)⇥ 10�10 [8]
or 694.9(4.3) ⇥ 10�10 [9]. This dispersive approach is
an active research area and results with reduced errors
should be expected [10]. The HVP contribution can also
be calculated with lattice QCD. With recently developed
methods and increased computational power, similar or
even higher precision results may be possible [11–15].
In contrast, the HLbL contribution is at present only
estimated by model calculations which give a result of
10.5(2.6) ⇥ 10�10 [16, 17] or 11.6(3.9) ⇥ 10�10 [1]. This
method is di�cult to improve further although it is pos-
sible to compare the model result for hadronic light-by-
light scattering with a lattice result for this scattering
amplitude [18]. A dispersion relation analysis of the
HLbL contribution is not available although work is un-
derway in this direction [19–24].

Combining these results gives the standard model pre-
diction a

sm

µ = 11659184.0(5.9)⇥10�10 which di↵ers from
the experimental value above by a

exp

µ �a
sm

µ = 24.0(6.9)⇥
10�10, about twice the estimate for the HLbL contribu-
tion. Thus, a systematically improvable, lattice determi-
nation of the HLbL contribution is needed to resolve or
firmly establish the discrepancy.

The complete set of HLbL diagrams include the con-
nected diagrams in Fig. 2 and the disconnected diagrams
in Fig. 3, 4, and 5. Only quark loops that are directly
connected to photons are drawn in the figures. This is be-
cause only these quark propagators need to be explicitly
calculated on the lattice. The e↵ects of gluons and other
quark loops are included automatically through the eval-
uation of these explicit quark propagators and the use
of an unquenched gauge ensemble. Although there are
many di↵erent types of disconnected diagrams, only one
type, shown in Fig. 3, survives in the SU(3) limit. The
other diagrams, shown in Figs. 4 and 5, vanish in SU(3)
limit because they contain quark loops that couple only
to one photon and the sum of the charges of the u, d, s
quarks is zero. Also, because the strange quark carries
only 1/3 of the electron charge, diagrams that are sup-
pressed by the di↵erence between the strange and light
quark masses are suppressed by their charge factors too.

xsrc xsnky′,σ′ z′,κ′ x′, ρ′

xop, ν

z,κ
y,σ x, ρ

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κ
y,σ x, ρ

Figure 2. Connected hadronic light-by-light diagrams. There
are four additional diagrams resulting from further permuta-
tions of the photon vertices on the muon line.

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

Figure 3. Leading-order disconnected diagram which is non-
zero in SU(3) limit. There are additional diagrams which can
be obtained from permutation of the photon vertices on the
muon line.

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κy,σ x, ρ

xsrc xsnky′,σ′ z′,κ′ x′, ρ′

xop, ν

z,κy,σ x, ρ

Figure 4. Disconnected diagrams of orderms�ml. There are
additional diagrams which can be obtained from permutation
of the photon vertices on the muon line.

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κ
y,σ x, ρ

xsrc xsnkz′,κ′
y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

Figure 5. Disconnected diagrams of order (ms � ml)
2 and

higher. There are additional diagrams which can be obtained
from permutation of the photon vertices on the muon line.

The first attempt using lattice QCD to compute the
connected contribution to HLbL was made by Blum,
Chowdhury, Hayakawa, and Izubuchi [25], which demon-
strated the possibility of performing such calculation.
A series of improvements in methodology were made
in Ref. [26], eliminating two sources of systematic ef-
fects arising from the use of larger-than-physical electric
charge and non-zero momentum transfer. The methods
presented in Ref. [26] also lead to a substantial reduction
in the statistical noise making a direct lattice calcula-
tion with a physical pion mass possible. Here, we report
the result of the first connected HLbL lattice calculation
with physical pion mass. In addition to the connected
HLbL calculation, we extended the methods of Ref. [26]
and compute the leading disconnected diagrams shown
in Fig. 3 using the same set of configurations. This is the
first disconnected HLbL calculation and the result sug-
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z,κy,σ x, ρ

Figure 4. Disconnected diagrams of orderms�ml. There are
additional diagrams which can be obtained from permutation
of the photon vertices on the muon line.

xsrc xsnkz′,κ′ y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

xsrc xsnky′,σ′ x′, ρ′ z′,κ′

xop, ν

z,κ
y,σ x, ρ

xsrc xsnkz′,κ′
y′,σ′ x′, ρ′

xop, ν

z,κ y,σ x, ρ

Figure 5. Disconnected diagrams of order (ms � ml)
2 and

higher. There are additional diagrams which can be obtained
from permutation of the photon vertices on the muon line.

The first attempt using lattice QCD to compute the
connected contribution to HLbL was made by Blum,
Chowdhury, Hayakawa, and Izubuchi [25], which demon-
strated the possibility of performing such calculation.
A series of improvements in methodology were made
in Ref. [26], eliminating two sources of systematic ef-
fects arising from the use of larger-than-physical electric
charge and non-zero momentum transfer. The methods
presented in Ref. [26] also lead to a substantial reduction
in the statistical noise making a direct lattice calcula-
tion with a physical pion mass possible. Here, we report
the result of the first connected HLbL lattice calculation
with physical pion mass. In addition to the connected
HLbL calculation, we extended the methods of Ref. [26]
and compute the leading disconnected diagrams shown
in Fig. 3 using the same set of configurations. This is the
first disconnected HLbL calculation and the result sug-

RBC 1610.04603

‘connected’ leading ‘disconnected’

Note: gluons  
NOT shown 

Calculate 4 quark propagators and combine with factors 
from muon and photon propagators, sum over points. 
Massless photon means that finite volume is an issue. 

First result: 
1 lattice spacing  
physical  connected: 11.6 ; disc. : -6.3 

stat. 
errors 
only 



Beyond the Standard Model explanations for the 
discrepancy in       ?aµ

Figure 2. One-loop contributions to the anomalous magnetic moment of the muon for supersym-
metric models with low-scale MSSM.
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with ↵1 and ↵2 the U(1)Y and SU(2)L fine structure constants respectively. The functions
f (A,B,C,D)
N (x, y) and f (E)

C (x, y) are given by

f (A,B,C,D)
N (x, y) = xy


�3 + x + y + xy

(x � 1)2 (y � 1)2
+

2x log x

(x � y) (x � 1)3
� 2y log y

(x � y) (y � 1)3

�
, (3.2a)

f (E)
C (x, y) = xy


5 � 3 (x + y) + xy

(x � 1)2 (y � 1)2
� 2 log x

(x � y) (x � 1)3
+

2 log y

(x � y) (y � 1)3

�
, (3.2b)

where we use the superscripts (A, B, C, D) and (E) as a short notation to allow omission of
the mass ratio arguments. As described in [50], the loop-functions f (A,B,C,D)

N and f (E)
C are

monotonically increasing for both x and y and are defined in 0  fN,C  1. From (3.1), we
see that the size of each �a(i)µ contribution is largely governed by the pre-factor between
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SUSY still a viable explanation  
- more constrained now by LHC 
searches since need relatively light 
smuon and more fine-tuning. 

simple GeV-scale ‘dark 
photon’ ruled out.

“Invisible” Dark Photon

• 9 dark X with mX < mZd
/2 and Qdgd � e" ) Br(Zd ! XX̄) ' 1

 (GeV)  A'm
3−10 2−10 1−10 1 10

   
  

ε

4−10

3−10

2−10

e
(g-2) NA64

ννπ→K

σ 5±
µ

(g-2)
favored BABAR 2017

BABAR: e
+
e
�
! � + invisible

90% CL bound from BABAR Collaboration, arXiv:1702.03327 [hep-ex]

GeV-scale“invisible” dark photon gµ � 2 solution ruled out

7

New scalar, m < 1 GeV  
could explain ae and aµ

deviation in ge�2 cannot be simultaneously explained to-
gether with the ⇠ 3.7� anomaly in gµ�2 in the simplest
versions of those models, even if one could circumvent
existing experimental constraints.

In this paper, we would like to point out that a minimal
model based on a single light real scalar �, can in princi-
ple explain the deviations of both gµ � 2 and ge � 2, in a
relatively economical fashion. We will show that a two-
loop Barr-Zee diagram [16, 17] might explain �ae while
a one-loop contribution could be the primary origin of
�aµ [10, 18], with both corrections mediated by the same
scalar �. For more detailed discussions of these loop pro-
cesses and their contributions to the electron and muon
anomalous magnetic moments see Ref. [19, 20], where
the authors discuss the relative contributions of one- and
two-loop diagrams, but focus primarily on the case of a
pseudoscalar boson.

Before going further, we note that somewhat less min-
imal solutions, e.g. with a scalar coupled to the muon
and a pseudo-scalar coupled to the electron, can poten-
tially yield the right size and sign for the deviations in
gµ � 2 and ge � 2, respectively, and satisfy experimental
constraints. However, here, we focus on the e↵ect of a
single light scalar where inclusion of the Barr-Zee contri-
bution represents an extension of earlier work in Ref. [10].
Studies of the contribution of Barr-Zee type diagrams to
gµ � 2 in the context of two Higgs doublet models and
supersymmetry can also be found in Ref. [21].

Let us consider the following e↵ective Lagrangian for
the real scalar � of mass m�

L� = �
1

2
m

2
�
�
2
�

X

f

�f� f̄f �
�

4
�Fµ⌫F

µ⌫
, (5)

where we only include explicit couplings with strengths
�f to a set of fermions f and have omitted various kinetic
terms and fermion masses. In this work, we allow f to
correspond to SM fermions, as well as other potential
more massive charged fermions. The �f are constrained
by phenomenology, as will be discussed later. We assume
that the � coupling to photons, through the field strength
tensor Fµ⌫ , is governed by the the constant � which has
mass dimension �1. The sum over ��� triangle diagrams
mediated by f will induce a contribution to � , but we
do not specify the properties of all charged states that
couple to �.

We will start with the gµ � 2 discrepancy, assumed to
be dominated by the one-loop diagram in Fig.1, which is
given by [10, 22, 23]

�a` =
�
2
`

8⇡2
x
2

Z 1

0
dz

(1 + z)(1� z)2

x2(1� z)2 + z
(6)

for a lepton ` of mass m` and x ⌘ m`/m�.
Current experimental constraints, as illustrated in

Ref. [24] - under the assumption that � only couples
to muons - allow 2mµ

<
⇠ m�

<
⇠ 100 GeV and �µ ⇠

µ µ

�

�

FIG. 1: One-loop � contribution to gµ � 2.

e e

�

��

FIG. 2: E↵ective two-loop Barr-Zee diagram contribution to
ge � 2, with fermion loops integrated out. The dot (•) repre-
sents light and heavy fermion loops that contribute to � .

5⇥10�4
�0.1, roughly corresponding to a range of param-

eters that can explain the 3.7� deviation in gµ � 2, given
by Eq. (1), which we will approximate as�aµ ⇡ 3⇥10�9.
The above lower bound on m� corresponds to demand-
ing that � decay promptly into muon pairs. In our
scenario, couplings to the electron lead to prompt de-
cays � ! e

+
e
� below the muon pair threshold, allowing

m�
<
⇠ 200 MeV. However, for such values of m�, the

one-loop positive contribution to ge � 2 starts to become
significant and cancel out the desired two-loop e↵ect that
we will discuss below. For m� well above the GeV scale,
we also find it di�cult to accommodate the suggested
ge � 2 anomaly in Eq. (4) with reasonable values of �e

and � . In addition, for m� � 1 GeV, typical low en-
ergy probes of � at intense beam facilities become less
e�cient, adversely a↵ecting experimental prospects for
testing the scenario. For the above reasons, we mostly
focus on the � mass range 2mµ

<
⇠ m�

<
⇠ few GeV, in

what follows.

Let us choose, for concreteness,

m� = 250 MeV and �µ = 10�3
, (7)

which according to Eq. (6) yields �aµ ⇡ 3⇥ 10�9.

We now address the deviation in Eq. (4). Here, we will
concentrate on the “Barr-Zee” diagram contribution to
a` in Fig.2, for a heavy fermion f loop that is represented
by the dot (•) in the figure, given by [16, 19]

�a
BZ
`

(f) = �
↵

6⇡

m`

mf

�`�f

⇡2
Q

2
f
N

f

c
I(y) , (8)
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Conclusion
•

• SM uncertainty dominated by HVP.  
 Methods using              have improved to 0.4%; lattice 
QCD results now at 2-3% - aim is <1% with QED and 
isospin-breaking included.   A key issue is ππ .

aE821
µ = 11659209.1(6.3)⇥ 10�10

disagreement  

• HLbL determination will also improve - first direct 
lattice QCD results now available. It seems clearly small.
• Muon g-2 @FNAL  will report its first new exptl result  
in 2019 - final aim is to reduce uncty by factor of 4. 
If central value remains, this will be         evidence for BSM 

aSMµ = 11659182.0(3.6)⇥ 10�10

aexptµ � aSMµ = 27(7)⇥ 10�10


