DUNE (for collider physicists)

Dave Newbold 24-June-20

DUNE (for collider physicists)

- (Recap of) neutrino physics
- LBN programme
- Experimental choices
- Design and technology
- **ProtoDUNE**
- Outlook

- **Executive summary**
 - The basic three-neutrino paradigm is well-established through experiment
 - 'Precision' neutrino experiments well-placed to look beyond the SM
 - We finally know enough to build 'optimised' large-scale accelerator experiments
 - Extracting the physics is difficult, expensive and fun
 - Even by the standards of collider physics

Neutrinos in the Standard Model

- Only LH ν in the 'classic' Standard Model
 - By definition massless, since both helicities appear in Yukawa coupling
- Mathematically tidy, but a bit odd
 - Massless / degenerate states normally indicate a fundamental symmetry
 - Most plausible extensions of the SM require / allow for RH and massive ν
 - Rules out hope of a fundamental relation between quarks and leptons

Neutrino mass

- Neutrino mass is an experimental fact
 - Measured through flavour mixing
- How can we accommodate this?
 - "Dirac ν " => ν_R exist, do not interact 'normally'
 - "Majorana ν " => ν and $\bar{\nu}$ are the same state
 - Something completely new
- All imply directly the existence of BSM physics
- We else should we care?
 - Existence of a weak mixing matrix invites comparison with quark sector
 - Rich interplay of neutrino phenomenology with cosmology
 - Light fermions 'wash out' structure formation in the early universe
 - Neutrino sector a source of CP-violation and lepton number violation
 - Possible driver for observed matter-antimatter asymmetry today

 $\left(\begin{array}{c} \nu_e \\ \nu_\mu \\ \nu_\tau \end{array}\right) = \mathbf{U} \left(\begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \end{array}\right)$

Neutrino mixing

- · Weak eigenstates do not align with mass eigenstates
 - Neutrinos produced in state of definite flavour
 - Propagating wave packet is mixture of mass eigenstates
 - For different mass eigenvalues, interference occurs
 - Measured flavour ≠ produced flavour in general

$$\left(\begin{array}{c} \nu_{\mu} \\ \nu_{\tau} \end{array}\right) = \left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right) \left(\begin{array}{c} \nu_{1} \\ \nu_{2} \end{array}\right)$$

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E_{\nu}} \right) \quad \stackrel{\text{figge}}{\text{gal}}$$

Note: L/E is time in neutrino frame

Neutrino experiments

- · Can look for 'appearance' or 'disappearance' in flight
 - Sensitivity depends on data sample and modelling of source
 - Material on the way (all matter, not antimatter) also matters.
- Intense neutrino sources available
 - Sun: $\nu_{\rm e}$, continuum and line spectrum; MeV 10's MeV
 - Cosmics on atmosphere: $\nu_{\mu},\,\bar{\nu}_{\mu},\,\nu_{\,\mathrm{e}};\,\mathrm{GeV}$ 10's GeV
 - Reactors: $\bar{\nu}_{e}$; MeV
 - Accelerators via pion decay: ν_{μ} , $\bar{\nu}_{\mu}$, bgd $\nu_{\rm e}$, $\bar{\nu}_{\rm e}$; GeV 10's GeV
 - Advantages: Known source spectrum, choice of baseline, can produce both particle and antiparticle
 - Supernovae (prompt and diffuse background): all flavours; MeV 10's MeV
 - Sample currently limited to 25 interactions from SN1987A
- Large detectors required, operated in low background conditions
- Where possible, seek to cancel (large) systematics in measurement
 - Power, baseline, particle / antiparticle, ratio between flavours

1967 Homestake solar ν experiment

Three-neutrino paradigm

Conventional parametrisation of the PMNS matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\eta_{1}} & 0 & 0 \\ 0 & e^{i\eta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

'Atmospheric' sector 'Reactor' sector 'Solar' sector (~10GeV, ~10^3 km) (~MeV, ~1 km) (~MeV, ~10^6 km)

'Solar' sector

 $0\nu\beta\beta$ expts (not accessible via oscillation)

- 3 angles, 1 CP-violating phase, 2 mass splittings
 - Δm_{21}^2 (>0); Δm_{32}^2 ($\approx \Delta m_{31}^2$); sgn(Δm_{32}^2)
 - Note: only sensitive to $\Delta m_{ii}^2 = m_i^2 m_i^2$
 - Arr sgn(Δm_{32}^2): normal ($m_1 < m_2 < m_3$) or inverted ($m_3 < m_1 < m_2$) ordering
- (Almost) all expt. results accommodated in this parametrisation

Values of parameters

$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$
$\sin^2 \theta_{23}$	$0.558^{+0.020}_{-0.033}$	$0.427 \rightarrow 0.609$
$\theta_{23}/^{\circ}$	$48.3^{+1.1}_{-1.9}$	$40.8 \rightarrow 51.3$
$\sin^2 \theta_{13}$	$0.02241^{+0.00066}_{-0.00065}$	$0.02046 \rightarrow 0.02440$
$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$
$\delta_{\mathrm{CP}}/^{\circ}$	222^{+38}_{-28}	$141 \rightarrow 370$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.523^{+0.032}_{-0.030}$	$+2.432 \rightarrow +2.618$

$$U_{\text{PMNS}} = \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.35 & 0.55 & 0.72 \\ 0.40 & 0.58 & 0.68 \end{pmatrix}$$

$$U_{\text{PMNS}} = \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.35 & 0.55 & 0.72 \\ 0.40 & 0.58 & 0.68 \end{pmatrix} \quad U_{\text{CKM}} = \begin{pmatrix} 0.97 & 0.23 & 0.0045 \\ 0.23 & 0.97 & 0.041 \\ 0.0087 & 0.040 & 1.0 \end{pmatrix}$$

- Neutrinos are really, really mixed
- All measurements are from a complex fit to experimental data
 - Uncertainties are heavily correlated; http://nu-fit.org

What don't we know?

- Unknown knowns
 - $m \delta_{
 m CP}$ barely measured
- Known unknowns
 - MO; how close θ_{23} is to maximal mixing
 - The fundamental nature of the neutrino
 - Light sterile neutrinos (is PMNS matrix unitary?)
 - Various suggestive 'anomalies' in low-energy results still be investigated
- Unknown unknowns
- The mission for the next decade
 - Increase precision on parameters; determine \(\delta_{CP} \) and mass ordering
 - Challenge three-neutrino model, determine unitarity, look for non-standard oscillation
 - Provide input (MO, θ_{13}) to Majorana-sensitive experiments
 - Use new experiments as 'observatories' for astrophysics, baryon decay, etc

DUNE experiment

- Accelerator ν_{μ} dis. / $\nu_{\rm e}$ app. (wide-band ~GeV beam, L=1300km)
 - $\bullet \quad \text{Measure as fn of E_{ν}: $P(\nu_{\mu} \to \nu_{\mu})$, $P(\nu_{\mu} \to \nu_{\rm e})$, $P(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu})$, $P(\bar{\nu}_{\mu} \to \bar{\nu}_{\rm e})$}$

DUNE appearance equation

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} + \delta_{CP})$$

$$+ \cos^{2}\theta_{23} \sin^{2}2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}$$

$$\Delta_{ij} = \Delta m_{ij}^{2} L/4E_{\nu}, \ a = G_{F} N_{e}/\sqrt{2}$$

Comments

- a accounts for matter-enhanced oscillations
 - The mid-west is believed to be made of matter, not anti-matter
- $\,\blacktriangleright\,$ Both $\delta_{\rm CP}$ and a change signs between $\nu_\mu \to \nu_{\rm e}$ and $\bar{\nu}_\mu \to \bar{\nu}_{\rm e}$
 - · But not for disappearance! (CPT theorem)
- Long baseline, appreciable value of θ_{13} allow disentangling of two effects
 - Allows simultaneous measurement of $\delta_{\mathrm{CP}},\,\Delta m_{32}^2,\,\theta_{23}$ and MO

Experiment parameters

- FD exposure needed for physics goals: 120 kt MW yr
 - ightharpoonup Practical limit of $\sim 1.5\,\mathrm{MW}$ for beam delivery system
 - Would like reach in five-year time span (with staged detectors)
 - Require around 40 kt fiducial mass
- Choice of baseline
 - On-axis (wideband) or off-axis (narrowband beam)?
 - On-axis allows higher flux, observation of second oscillation minimum
 - Optimisation of energy vs baseline for δ_{CP} indicates 1-1.5 Mm required
 - Geodesic distance from FNAL (Chicago IL) to SURF laboratory (Lead, SD) 1300 km
- Background requirements
 - Shielding from cosmic rays vital for low-energy physics programme
 - Also massively reduces non-useful data rate from experiment (still dominated by muons)
 - SURF 4850ft level is just about deep enough

On-axis vs Off-axis

Interaction medium

- Emphasis on energy and position resolution over wide range
 - ▶ Homogeneous medium is required, no iron etc

Medium	LAr TPC	Water Cherenkov	Scintillator
Cost	√	ノ ノ ノ	V
Density	ノ ノ ノ	V	√
Logistics	V	V	VV
E. res.	V	V	V
Threshold	V V	✓	ノ ノ ノ
Posn. res.	VVV	√	V
Example	DUNE	Hyper-K	JUNO
Principle	Charge + light	Light	Light

DUNE events

- Inelastic events on LAr have complex final states ($\lambda_{\nu}\approx\,1$ fm)
- · The 'killer feature': track by track reconstruction within events
 - Keeps energy resolution under control
 - Allows significant reduction in detector systematics / mis-ID
 - ▶ Enables low-energy (MeV) and zero-background medium-energy (GeV) physics
- At 1mm resolution, effectively $\,\sim3\times10^{13}$ voxels (cf BEBC, $\,\sim4\times10^{12}$)

So what *else* can it do?

- Precision measurements allow comparison with theory
 - ▶ In the long term, aim for ~few percent measurement of mixing angles
 - Allows (e.g.) testing against generic sum rules based on group structure of BSM theories:

$$\sin \theta_{12} - \sin \theta_{13} \tan \theta_{23} \cos \delta_{\rm CP} = A$$

- Astrophysical measurements
 - \triangleright Principally: prompt detector of ν from core-collapse supernovae
 - Solar neutrinos (stretch goal)
- **BSM** physics
 - ▶ Baryon decay (mainly SUSY-motivated p $\rightarrow K^{+}\bar{\nu}$)
 - 'Beam-dump' style neutral particle searches using near detector (see later)
 - Covering specific gaps in DM parameter space
- Non-beam physics places significant constraints on DAQ, computing
 - Designing an 'always-open telescope' turns out to be challenging

Supernova bursts

- Core-collapse supernova
 - Essentially a neutrino-driven explosion
- Stages of collapse
 - Infall: increased $\nu_{\rm e}$ emission, but most leptons are trapped
 - Neutronisation: huge rapid release of $\nu_{\rm e}$ as shock wave stalls on nuclear matter
 - Accretion: all-flavour emission from hot neutron star envelope
 - Cooling over a few seconds

Here's one we prepared 8000 years ago

- {Flux, energy spectrum, flavour distribution} can be measured
 - Specific information on process, progenitor, final object is carried
- Rate of 'nearby' core-collapse supernovae is ~per few decades
 - DUNE sensitivity is sufficient to trigger for SNB across the galaxy

Supernova bursts

DUNE sensitive to $\nu_{
m e}$ via nuclear reaction:

$$\nu_e + ^{40} {\rm Ar} \rightarrow e^- + ^{40} {\rm K}^*$$

- Water detectors sensitive primarily to $\bar{\nu}_{\rm e}$ via hydrogen IBD
- Complementarity is vital to obtain full picture
- Fast trigger capability (~minutes / hours before photons arrive)
- Need to be 'always on'

LBNF / DUNE layout

PIP-II layout

In transit

SURF

Underground layout

Single-phase TPC

- Readout
 - 2MHz sampling on collection + induction wires (few k electrons)
 - Low noise, large dynamic range needed; ASICs immersed in LAr

Construction

Anode Plane Assemblies

- 2560 wires in three planes
- · Control of dimensions and wire tension critical
- Shrinks by several mm at LAr temperature!
- Size dictated by shaft (but also by UK trucks...)

Dual-phase TPC

- Dual-phase readout
 - Extract charge into surface gas via micro channel plate
 - Intrinsic gain improves S/N
 - Pixelated readout
 - Efficient use of LAr volume
- Challenges
 - Longer collection length (6m)
 - Mechanical precision
 - 600kV potential
- Technology still developing
 - First module will be SP

Photon detection (SP)

- X-arapuca concept maximises collection area per SiPM
 - ightharpoonup Sampling of LAr fast scintillation component (6ns) allows t_0 determination

Key experimental challenges

- Drift volume conditions
 - E field uniformity (1%)
 - ▶ LAr purity up to 6m (4us) drift required, <ppt contamination
- Mechanical stability
- Readout
 - No access to cryogenic electronics
 - Longevity concerns
- Monitoring and calibration
 - Calibration from both dedicated systems and detector backgrounds
- Logistics
 - Building a 40kt anything is hard, doing it a mile underground is very hard
- DAQ

ProtoDUNE

December 2015: EHN1 extension (CERN North Area)

ProtoDUNE beam event

ProtoDUNE-SP outcome

- · Success! Basic concept of SP detector validated
 - ▶ ProtoDUNE-SP runs ends ~now, LAr removed for upgrade back in 2022

TDAQ challenges

- Data rates ('LHC-sized' system)
 - ▶ Data in: ~10Tb/s, out: 100Gb/s
 - Self-triggering on noisy data
- Power and space constraints
 - ▶ 100kW per module; confined space over cryostat
 - Detector is huge and distributed
- Access and location: 'no humans allowed'
- · Reliability
 - '3 nines' uptime: unprecedented from HEP DAQ systems
 - Redundant everything, to the extent possible (but not the network)
- SNB data handling
 - ➤ On SNB trigger, need to store ~100s data continuously (Nobel Prizes, etc)
- Technology choices
 - This is an 'interesting time' to be designing an online system of this type

Lesson from history

TDAQ design

- Highly 'network-centric' design allows redundancy
- Technology choices for some components to be determined for PD-II
 - e.g. use of 'pure CPU' vs 'FPGA + CPU' vs 'coprocessing' in front end of system

TDAQ custom hardware

FELIX card (BNL / NIKHEF)

DUNE Timing System (Bristol)

+ a few hundred

Data volumes

Headline number: 30PB raw data per year

Scale set by WAN link SURF -> FNAL

Source	Annual Data Volume	Assumptions	11
Beam interactions	27 TB	10 MeV threshold in coincidence wit including cosmic coincidence; 5.4 ms	
Cosmics and atmospheric neutrinos	10 PB	5.4 ms readout	
Radiological backgrounds	< 2 PB	$< 1 \ \mathrm{per} \ \mathrm{month} \ \mathrm{fake} \ \mathrm{rate} \ \mathrm{for} \ \mathrm{SNB} $ readout	trigger; 100 s
Cold electronics calibration	4TB	scaled from ProtoDUNE-SP experien	ice
Radioactive source calibration	100 TB	$< 10~{\rm Hz}$ source rate; single APA rereadout	eadout; 5.4 ms
Laser calibration	200 TB	10 ⁶ total laser pulses; half the illuminated per pulse; lossy comp suppression) on all channels	
Random triggers	60 TB	45 per day; 5.4 ms readout	
Trigger primitives and detector performance studies	< 15 PB	³⁹ Ar dominated	

Energy (MeV)

Near Detector

- · The observed spectra are a convolution of
 - Actual neutrino flux $\phi_{\nu}^{\text{FD}}(E_{\nu})$ not precisely known
 - \blacktriangleright Interaction cross-sections $\sigma_{\nu}^{\mbox{FD}}(E_{\nu})$ need to measure for Ar, but hard
 - \blacktriangleright Efficiency / smearing $T_{\nu}^{\mbox{FD}}(E_{\nu},E_{\mbox{det}})$ simulation only an approximation
- At first order, these cancel in the ratio of near and far observation
 - Position a near detector in the un-oscillated beam
 - Can be 'small' since flux is much higher
- However
 - Large detectors and small detectors response differs
 - Flux and backgrounds will differ
 - ullet Cross-sections differ unless identical composition (and $u_{
 m e}$ cross-section not constrained)
- · Lessons learnt for the 'precision' era
 - ND must deconvolute and correct for {flux, spectrum, cross-sections, efficiencies}

Near Detectors

Sensitivities

CP Violation Sensitivity

Zero sensitivity to zero CPV

Sensitivities

Mass Ordering Sensitivity

Assuming normal ordering

Sensitivities

• 7 years (staged) sensitivities

Conclusions and Outlook

- 'Precision era' of neutrino physics is (almost) here
- Many ways to probe BSM physics
 - No time to cover the 'novel' analyses
- Detectors are large, complex and challenging
 - Even by the standards of collider physics
 - Much knowledge to exchange across the two fields
- Watch this space!
 - New collaborators always welcome

- DUNE tentative timeline:
 - 2022: ProtoDUNE-II starts
 - 2024: Surface facilities available at **SURF**
 - 2026: Module #1 installation
 - ▶ 2027: Module #1 filling, module #2 installation
 - > 2028: Module #1 commissioning with beam
 - > 2029: Running with 20kt
 - > 2031: Running with 30kt, ND operating
 - ▶ 2033: Running with 40kt
 - > 2035: Upgrade to 2.4MW beam

