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Over the past few years, both direct and indirect searches for WIMPs have
continued to place ever more stringent limits. In the meantime, the Higgs boson
has been discovered, and the mystery of why CP is so precisely conserved in
QCD remains to be solved. It is possible to draw these three threads together if
the dark matter in our Universe consists of axions. | will describe a direct search
for axions called ADMX, progress in running this experiment using ultra low noise
SQUID amplifiers, and work at Sheffield on a idea to increase the search rate in
cavity axion searches using a resonant feedback approach.
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» The Strong CP problem QJ

Standard model symmetry group is SU(3) x SU(2) x U(1)

NON-ABELIAN NON-ABELIAN ABELIAN

CP CP
VIOLATING CONSERVING

(© + argdet M) -
CONSERVING' )

Lcpy = 392 Eqcp - Baep

Evidence for CP conservation in the SU( ) strong interactions
from multiple measurements of neutron and nuclear electric
dipole moments. For example, neutron EDM < 1026 e-cm.

NEUTRON

Even simple dimensional arguments
show that this is unexpected. Why do
the intricate SU(3) QCD interactions
conserve CP when the less intricate
SU(2) QED interactions do not? This is
the strong CP problem.
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The axion is a pseudoscalar; has the
same quantum numbers as the 7
and the same interactions, but with
strengths scaled to the axion mass
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[1] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update
2016 revision by A. Ringwald, L. Rosenberg, G. Rybka,



How to Reveal ‘Invisible’
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Don't try and create axions, then detect them. Your
searches will have signal strength proportional to g;.,,
Instead, hypothesise that axions occupy the local halo
at a mass density of about 0.3 GeV/c?/cm3, or a
number density of about 10 cm-3.

Induce axion to photon conversion using as large a
static magnetic field as you can afford. ADMX
currently has a 7.61 magnet.

Surround the conversion region with a resonant energy
storage structure. This works by providing a reservolr
of oscillators with the possibility of promotion to an
excited state at energy

AE — maCQ
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Detectors

alumina tuning rod

(a dielectric)

copper coated
stainless steel

(a metal)

> from above with lid removed.
50cm )
Depth is 1m.
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stimulated excitation of the mode and spontaneous
de-excitation due to thermal relaxation. Equilibrium
population controlled by axion conversion rate, cavity Q
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Expected signal power ~ 10722 W



CryogeniciWarm

AM Radio =
Double Heterodyne Receiver
10.7 MHz 35 kHz
J\
I I
Integration: 8 msec FET 50 sec
Resolution: | 125Hz 0.02 Hz
Maxwellian Fine-Structure
i A
e ~—
AE/E ~10-17
—> -«
——
AE/E ~ 106
High-resolution channel for
non-thermalized axions
« Improved search sensitivity
« “Movie” of galactic formation «>
U >
4 Frequency

Maxion (energy)




S Unversity Cold Low-Noise Amplification
’Yiy (S)lflefﬁeld. 1St Stage RF SQU'D

2nd Stage: Balanced HFET amplifier
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 Currently HFET amplifiers
(Heterojunction Field-Effect Transistor)

— A.k.a. HEMT™ (High Electron
Mobility Transistor)

— Workhorse of radio astronomy,
military communications, etc.
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First Probe of sub-DFSZ coupling halo axions!



&) i New approach: Digital @
Resonant feedback

Maybe the resonant structure doesn’'t have to be in the cavity.

COLD WARM

[-PHASE LOCAL OSCILLATOR

)

\29 ADC — —DAC

St r U Ct U re DIGITAL AMPLIFIER

FILTER

operated ! %>Mm e -® ;

CAVITY

PLATES
O ff - Q-PHASE LOCAL OSCILLATOR
resonance L ?

ATTENUATOR

For high Q, but without oscillation, need servo control of the
open loop gain so that it is marginally less than 1. Advantage
of this method is that many resonators can run in parallel.
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Shefﬁeld ADC/DAC/DSP SUBSYSTEM
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University Digital Electronics in a Low Noise o
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CRYO CRYO ROOM
HEMT HEMT TEMP

SQUID  AMP AMP AMP D.S.P. ‘i‘:';'dgﬂe"uator

2.5K 2.5K 100K 0.1uV to 50o0hm.
20dB 20dB 20dB 60dB 0dB

Cavity Noise Cumulative Noise local

Noise Source i . )
times Gain Gain to component

Cavity -181.5 dBm 0 dB
SQUIDAmp -181.5 dBm -3 dB -181.5 dBm
1stHEMT -161.5 dBm 17 dB -167.6 dBm
2nd HEMT  -141.5dBm 37 dB -167.6 dBm

Room TemP  _1215dBm  57dB  -151.6 dBm
p

Signal
gl -61.50Bm 117 dB @

—127dBm — 117dB = —244dBm = 4 x 107*°* W
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Mitch Perry
(Sheffield B.Sc. 2017)
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Bore of 16cm In diameter - sensitivity
to higher mass axions. 247 static field.

Bucking coils for field free region Pm, |<—

o0cm above the main magnet \

High Temperature
Superconductor Coils: \ 2.5m
44 modules of YBCO tape

Niobium Tin (NbsSn) coils

e Niobium Titanium
(NbTI) coils
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* Axion dark matter is well motivated.

« ADMX is probing DFSZ halo axions already!

* Coverage of the full plausible mass range
challenging. Higher field magnet would help, £££.

e Proposed UK contribution |

* Resonant feedback offers a pote

Jaw,

ntial solution.

Bailey]:

% Build and test a prototype resonant feedback system.
% Model the resonant structure, assess form factor.
% Deliver the prototype for testing with the ADMX cavity.

e Seedcorn money from UofS Is getting this started.
e Sheffield, Lancaster UK collaboration.
 Maybe we will detect axions! | certainly hope so.




