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S-matrix theory = technology for calculating and dealing with amplitudes. 

Amplitudes are not physical observables, suffering artefacts like gauge dependence, 
ghosts, IR singularities and superficially acausal behaviour. 

These artefacts are eliminated only when we combine individual amplitudes 
together to obtain physical probabilities. 

Dream: develop the technology for calculating these probabilities directly in the 
hope that such artefacts never appear explicitly.
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Causality is built into QFT through the vanishing of the equal-time commutator 
(bosons) or anti-commutator (fermions) of field operators: 

Yet, it is the Feynman propagator that is ubiquitous in S-matrix theory: 

 
The S-matrix is not a good place to start: infinite plane waves in infinite past/future. 

Surely, it is the retarded propagator that should be ubiquitous:
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An archetypal signalling process: Fermi’s two-atom problem       

Fermi calculated that P (D∗S|DS∗) = 0 for T < R/c

but he made a mistake

[E. Fermi, Rev. Mod. Phys. 4 (1932) 87]
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Fermi should have obtained a non-zero result for all T:

• Vacuum can excite D at any time (R independent)  

• Even the R dependent part of P is non-zero for T < R/c

There is no paradox though because Fermi’s observable is non-local. 

Resolution finally came via Shirokov (1967) and Ferretti (1968). 

Think of measuring only D and not S (or the electromagnetic field) at time T. 

In that case:

for T < R/c
dP (D∗|DS∗)

dR
= 0

[M. I. Shirokov, Sov. J. Nucl. Phys. 4 (1967) 774; B. Ferretti, in Old and new problems in elementary particles, ed. Puppi, G., Academic Press, 
New York (1968); E. A. Power and T. Thirunamachandran, Phys. Rev. A56 (1997) 3395; for a summary of the history of the Fermi problem, see R. 
Dickinson, J. Forshaw and P. Millington, Phys. Rev. D93 (2016) 065054.]
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Amplitude-level analysis: the relevant Feynman graphs

1 2 3 4

1 4 2 2 3 3x x x* * *+ +

crossed+ c.c.

A-causal terms cancel in the sum of

Causality emerges only at the level of probabilities



“In this paper I will not say anything new; but I hope that it will not be 
completely useless because, even if already known or immediately deducible 
from known facts, it does not seem to be clearly remembered.”   Ferretti 1967 

• 1932 Fermi’s original paper 

• 1967 Shirokov points out Fermi’s error 

• 1968 Ferretti provides the explicit calculation I outlined 

• 1970s: Fermi’s result still regarded as textbook  
e.g. Milonni & Knight in 1974 wrote: 
“..atom 2 has nonvanishing probability of being excited only after time R/c. The problem is now textbook material.” 

• 1987: Rubin re-discovers the (fake) acausality 
“In this paper a simple model of a localized source and a localized detector is studied….it is found that the model  
violates Einstein causality.”  

• 1990: Biswas et al and Valentini essentially re-discover Ferretti’s solution and the role of vacuum correlations 

• 1994: Hegerfeldt paper (“Causality Problems for Fermi's Two-Atom System”) generates media interest 

• 1994: Buchholz and Yngvason restore order  
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“Weak causality”

1. Alice prepares her atom at t = 0 (excited = 1, ground = 0) 
Bob prepares his atom at t = 0. 

2. Bob measures his atom at t = T. 

3. Go to step 1 and repeat. 

4. Bob can determine Alice’s choice only after accumulating sufficient statistics.

R

Alice Bob

Schlieder (1971) 
Buchholz & Yngvason (1994) 
Hegerfeld (1998)
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E

A manifestly causal way to compute probabilities

e.g. P = 〈i|U †|f〉〈f |U |i〉 = Tr(|f〉〈f |U |i〉〈i|U †)

ρ0

To see causality: commute E through U and use BCH

U = Texp

[
1

i

∫ tf

ti

dt Hint(t)

]

The BCH formula leads to an expansion of nested commutators: 
[see also M. Cliche and A. Kempf, Phys. Rev. A81 (2010) 012330; J. D. Franson and M. M. Donegan, Phys. Rev. A65 (2002) 052107;  
R. Dickinson, J. Forshaw, P. Millington and B. Cox, JHEP 1406 (2014) 049.] 

where F0 = E

Fj =
1

i
[Fj−1, Hint(tj)]

⇥12···j enforces t1 > t2 > · · · tj
<latexit sha1_base64="6jm9fSVaI4pLn1EHcnW5HoLisH0="></latexit>

P =
1X

j=0

Z tf

ti

dt1 dt2 · · · dtj ⇥12···j hi|Fj |ii
<latexit sha1_base64="l+A9NRY1CvxD4x2nwQETK8Rb0Eg="></latexit>
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H0 =
X

n

!
S
n |nSihnS |+

X

n

!
D
n |nDi hnD|+

Z
d3x

⇣
1
2 �̇

2 + 1
2 (r�)2 + 1

2m
2
�
2
⌘

Hint(t) = MS(t)φ(xS , t) +MD(t)φ(xD, t) |xS − xD| = R

MX(t) =
∑

m,n

µX
mn e

iωX
mnt |mX〉〈nX | X = S,D

ωmn ≡ ωm − ωn

e.g. Fermi problem in scalar field theory

P = Tr(EρT )

ρT = UT,0ρ0U
†
T,0

UT,0 = Texp

[
1

i

∫ T

0
dtHint

]

E = ES ⊗ ED ⊗ E

e.g. �0 = |i��i|

e.g. E = |f〉〈f |

E =
∑

n,α

|nS , qD,αφ〉〈nS , qD,αφ|
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Notation: {[ED,MD
1 ],MD
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Can then write down any F operator:

(…) = permutations subject to time ordering within each operator
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E =
∑

n,α

|nS , qD,αφ〉〈nS , qD,αφ|

e.g. the Fermi case (only D is observed to be in state with energy      )ωq

|i〉 = |pS , gD, 0φ〉

Lowest order:

No dependence on source atom, S. 

∆XY (H)
ij = 〈0|{φX

i ,φY
j }|0〉�i| F2 |i� = �pSgD0�| 1

4
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12EDD
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j ]|0〉 Θij

= 11S11ϕ |qD⟩⟨qD |

Unit operators in field space and in S space imply latest time must always 
be on D in the form ED

1⋯
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• Every term is purely real. 

• Every term contains a retarded propagator linking S and D = manifestly causal. 

• Just need expectation values of nested commutators & anti-commutators. 

• Simple diagrammatic rules…..
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The graphs relevant to the part of the probability that D is excited at time T 
that depends on the location of atom S. 

These are NOT Feynman graphs 

Latest vertex on S always connected to a future vertex on D by a retarded 
propagator.  

S D S D S DS D
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Computing expectation values

1. The field

The vacuum expectation value of a general nesting of commutators and anti-
commutators, i.e. E1...(2p) with any combination of underlinings, can be written
as 2p times the sum of all distinct products of p propagators subject to the fol-
lowing rule: every non-underlined (commutation) index must become the second
index on a retarded propagator and all remaining indices are paired and associ-
ated with Hadamard propagators.
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2. The atoms E = εmn |m〉〈n|

Tr
(
ρab |a〉〈b|
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. . .
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, . . .
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×

×
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e.g. N = 3

1. Work clockwise around the ellipse and

(a) assign a factor of µrs for each time,

(b) connect consecutive times with atom Wightman propagators �r(>)
ij ,

(c) assign a factor of e+(�)i�rti for the times ti followed (preceded) by a
cross.

2. Assign a factor of �i for any time ti appearing on the falling side of the
ellipse.

εmn = δmqδqn

ρab = δagδgb

for Fermi problem

(detector atom)



17

=
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t2
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x
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x
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+   3 more
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pn|2 |µD

qg|2 sin(�S
pnt23) sin(�D

qgt14) �SD(R)
34 �DS(R)

12

p g

n q

S D

Since probabilities contain both time-ordered and anti-time-ordered contributions, the 
diagrammatic structure resembles that of the closed-time-path formalism. 
 
[J. S. Schwinger, J. Math. Phys. 2 (1961) 407-432; L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47 (1964) 1515-1527, Sov. Phys. JETP 20 (1965) 1018; R. L. 
Kobes and G. W. Semenoff, Nucl. Phys. B260 (1985) 714-746; B272 (1986) 329-364; R. L. Kobes, Phys. Rev. D43 (1991) 1269-1282; see also R. 
Dickinson, J. Forshaw, P. Millington and B. Cox, JHEP 1406 (2014) 049.]
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In order to find a (weakly) causal result for the Fermi two-atom problem, we had to 
sum inclusively over the (unobserved) final state of the photon field. 

By working directly with probabilities, summing inclusively over the states spanning 
a given Hilbert space corresponds to a unit operator, i.e. we do not have to 
calculate the individual amplitudes for all possible emissions in the final state. 

What does this mean for the Bloch-Nordsieck or Kinoshita-Lee-Nauenberg 
theorems? Are they applied implicitly if we work directly with probabilities? 
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General observables

=    operator form of the Sudakov factor

NR0 �
�

�

�

R0

d3k

(2�)3
1

2
�

k2+m2
a†

�(k)a�(k)

�R0 � I +
��

j=1

(�1)j

j!
:
�
NR0

�j
:

= : e�NR0 :

�R0 |k1 . . .kN � =

�
|k1 . . .kN � if n0 = 0

0 otherwise

n0 = number of quanta in R0

�R3 = |0��0|
�� = I

e.g.

=    semi-inclusive projection operator�(j)
R0

� :
1

j!

�
NR0

�j
e�NR0 :

Projects onto the subspace of states in which exactly j particles have momenta
in R0.

P = 〈i|U †EU |i〉 = Tr(EUρiU
†)
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This generalises to

�{ja}
{Ra�R0} � :

�

a

�
1

ja!

�
NRa

�ja

�
e�NR0 :

Projects onto the subspace of states in which exactly
�

a ja particles have mo-
menta in R0, distributed so that exactly ja particles have momenta in each
disjoint subset Ra � R0.

e.g. Pick R0 = R3 and one particle with momentum k � k + d3k. In this case
we compute using

E = : Nk e�NR3 : =
d3k

(2�)32E
: a†(k)a(k) |0��0| : =

d3k

(2�)32E
|k��k|

Can compute differential in any function of the final state momenta for observables 
that are fully inclusive over some region, i.e. the most general type of observable.

R0 is the region over which the observable is sensitive

dE

dV
=

�

n

n�

i=1

�

R0

d3ki

(2�)3
1

2Ei
�
�
vn

�
{ki}

�
� V

� 1

n!
:

n�

i=1

�
a†(ki)a(ki)

�
e�NR0 :
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Conclusions 

• The S-matrix is (quite literally) only half the story. 

• Einstein causality in the Fermi two-atom problem emerges only after we sum inclusively 
over the unobserved final states of the source atom and the electromagnetic field. 

• There exists a way to compute directly at the level of probabilities where causality is 
explicit: How useful is it? What are the general graphical rules? 

• What are the implications for dealing with soft and collinear IR divergences in gauge 
theories? 

• There are parallels with the closed-time path formalism and diagrammatics of non-
equilibrium QFT.


