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Dual/overlapping role of the LHC

e Searching for Physics Beyond the SIVI
— Well motivated

Standard Model|

Beyond the Standard Model
~and General Relativity!
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What do we actually measure?

e The final state!
— Quantum mechanics says so

* Clearly we can’t, even in principle, tell the
difference between amplitudes with identical
final states

* |f your measurement can’t be defined in such
terms, you should worry!
— Model dependence
— Physical meaning!
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Tension between

* “universal measurement” with meaning
beyond that particular experiment and
“universal measurement” with meaning
beyond that particular theory

* “We counted charged particles in this
particular region of phase space with these
particular beams and this particular detector”

* “We extracted the top mass under the
assumption that this particular version of this
MC is true”
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Simulation and Experiment
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Simulation and Experiment

Digitizec
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Generator e Detector & Reconstruction

Trigger
Simulation

Particle Four- N D Data for
Vectors Analysis

Unfolding & Data Correction:
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Simulation and Experiment

Digitizec
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e Collider! Readout e Event

e Detector & Reconstruction

Trigger

\_ ) Data tor
Analysis

Unfolding & Data Correction:
Make the measurement!
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“Unfolding”

 Some people really don’t seem to like it...

* |f the cross section is well-defined, unfolding
and its uncertainties can be well-defined

— Fiducial region, matches the experimental
acceptance well

— True final-state obects

 Both mandate simulation of the full final state
— Inclusive calculation is not enough on its own
— MC generator are key tools
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What is your final state?

e Quarks, gluons? (top?)
e W, Z, H?
* Taus?

 Hadrons? (lifetime cut? Do they propagate in B-
field? In material?)

e Jets (what are the input objects?)

* Neutrinos? All of them? Missing E;

* Photons? Isolated photons?

* Electrons, muons? (what about FSR?)
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Important considerations (for searches too)

 What is your final state?

— A common choice is place a lifetime cut at 10ps, and
where necessary to draw further distinction, draw
the line at hadronisation.

— Stable objects (hadrons, leptons, photons) can be
combined algorithmically to give well-defined objects
(jets, dressed leptons, isolated photons, missing E;...)

— Remember, this is about defining “truth”, i.e. what
we correct back to within some systematic
uncertainty
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A Drell-Yan Event
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A Drell-Yan Diagram
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e Consider low mass Drell-Yan (below Z peak)

— Large source of low-mass lepton pairs from Z
resonance with a hard FSR photon

— Present in detector

— Present in dressed truth definition, which is much
closer to what the detector sees in this case
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Dressed (small cone)

|




e Consider low mass Drell-Yan (below Z peak)

— Large source of low-mass lepton pairs from Z
resonance with a hard FSR photon

— Present in detector

— Present in dressed truth definition, which is much
closer to what the detector sees in this case

— Dressing with large cone... approaching Born but
not asking about unphysical variables...
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Dressed (possibility) big cone

|
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e Consider low mass Drell-Yan (below Z peak)

— Large source of low-mass lepton pairs from Z
resonance with a hard FSR photon

— Present in detector

— Present in dressed truth definition, which is much
closer to what the detector sees in this case

— Correction to “Born” level has to do this 2
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Born
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A Drell-Yan Diagram
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* Consider low mass Drell-Yan (below Z peak)

— Large source of low-mass lepton pairs from Z
resonance with a hard FSR photon

— Present in detector

— Present in dressed truth definition, which is much
closer to what the detector sees in this case

— Correction to “Born” level

— Low mass Drell-Yan near Z mass ~30% theory
correction built into data
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Table 5. The combined Born-level fiducial differential cross section 3“‘7;, statistical 8***, total correlated §°°F, uncorrelated\d***, #nd total §'**

s

uncertainties, as well as individual correlated sources 4:°°. The correlated uncertainties are a linear combination of the 13 corrélated uncertainties
in the nominal muon and electron channels. As the uncertainties on the combined result no longer originate from individual error sources they are

numbered 1-13. Also shown is the correction factor used to derive the dressed cross section (D), and the NNLO extrapolation factor (A) used to
derive the cross section for the full phase space, along with the uncertainties associated to variations in scale choice 6%, and PDF uncertainty

6‘:{“*"". The luminosity uncertainty (1.8%) is not included.
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QED FSR effects
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Fig. 44: Comparing the generated Z /" to the observable (defined in the text). Left: the Z/v* mass;
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Key points from that example

e |finthe future a better QED/EWK calculation is
done (or a bug is found in the old one) the Born
measure is no use, but the dressed one is
unaffected (so long as the radiation in the
dressing region is adequately described) and can

be compared to the new theory.

* |f you want to e.g. fit a PDF, correcting to Born
evel improves the correlation between dilepton
mass and partonic x = easier to interpret.
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Fiducial or not?

* Difference between “efficiency corrections” or
“unfolding”, and “acceptance corrections”.

— The first two generally mean correction for
detector effects, which no one but the
experimentalists can do.

— The third means extrapolating into kinematic
regions which have not been measured at all

* Beware of the third, especially as we go to
higher energies...
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Unfold
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Increase
acceptance
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Increase
acceptance

Contur/JMB
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Extrapolate

Contur/JMB







But how
reliably?
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Concept of a “fiducial” cross section

* Defines a region in which acceptance is ~100%

* Implies that some kinematic cuts must be
implemented in whatever theory the data are
compared to (easy for MC, less so for some
high-order calculations)
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Inaccessible. Removed by
kKinematics cuts, and not
part of the fiducial cross
section
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Concept of a “fiducial” cross section

* Defines a region in which acceptance is ~100%

* Implies that some kinematic cuts must be
implemented in whatever theory the data are
compared to (easy for MC, less so for some
high-order calculations)

* |deally of course, build an experiment which
covers all the phase space of interest...
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Concept of a “fiducial” cross section

* Defines a region in which acceptance is ~100%

* Implies that some kinematic cuts must be
implemented in whatever theory is compared
to (easy for MC, less so for some high-order
calculations)

* |deally of course, build an experiment which
covers all the phase space of interest...

e Fiducial cross section should be defined in
terms of the “ideal” or “true” final state
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NB This has always been true, but
becomes more relevant the more phase
space you open. Hence at LHC, this now
impacts electroweak-scale objects much

more than it did at LEP or Tevatron
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Real example: ZEUS charm

photoproduction i
* Electron-proton collider, ) : _

proton energy 820 GeV,
electron energy 27 GeV

—>Mean photon energy ~10
GeV.

—>Photon proton CM energy
~100 to 300 GeV

- Kinematics highly boosted
in the proton direction
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Real example: ZEUS charm
photoproduction

* Tagging of |
charm via D* f
decay

- Highly
dependent on
track
reconstruction,
which has limited
rapidity and pT ZEUS (HERA) G i Comatan
coverage.
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Using the above quantities we measure an ep cross section for D** production,
olep = D*=X)=a(ep — D X) + a(ep — D*~X), of:

o(ep — D** X)) = 32 & T(stat)t3(syst) nb

in the kinematic region {pr(D*) > 1.7 GeV, [5(D*)| < 1.5} and 115 < W < 275 GeV. This
cross section is valid for Q? < 4 GeV?. The statistical error also includes the one due to the
Monte Carlo statistics.

In order to quote a cross section for charm production we need to correct for the fraction of
events in which a charm quark pair fragments into D** or D*~ as well as for the acceptance A,
of the kinematic region {pr(D*) > 1.7 GeV, |5(D*)| < 1.5}. The former is (52.0 = 4.2)% [33]
and the latter is calculated by using PYTHIA with MRSD” /GRV HO to be A, = 13.7% for
the region 115 < W < 275 GeV. This extrapolation outside the kinematic region has a large
uncertainty. In extrapolating pr(D*), the uncertainty is mainly due to the strong dependence
on the m,. value and for »(D*) it comes from the large differences between the different structure
function parametrisations in the region |p(D*)| > 1.5. As a consequence, the systematic error
of the product Ace- A, 1s very large. We have fixed m. to 1.5 GeV and quote the systematic
error Al Ace- A.,;) coming from the different structure functions and using HERWIG (SFE and
MC in Table 1 respectively). Using a value of m. of 1.35 GeV (1.8 GeV) results in a shift of
+25% (—40%) of the estimated cross section.
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Real example: ZEUS charm
photoproduction

(W) Ace A(Ace-A..) | olep — ccX) | Integrated | o(yp — ccX)
(GeV) (%) SF MC (pb) ()] (pb)
163 +£16 [ 21 +£7 | 8.1 v | +54% | 0.23 £0.087557 | 0.0367 | 6.3 22750
243 £24 | 28 +£8 | 224 Pa% | 430% | 0.21 £0.0675 10 | 0.0122 | 16.9 £5.275%7
198 +£20 | 48 + 11.4 Tl | +48% | 0.45 £ 0.117555 | 0.0488 | 9.1 +£2.27%

Table 1: Acceptances and cross sections

We therefore estimate the ep charm production cross section at /s = 296 GeV for @* <
4 GeV? in the range 115 < W < 275 GeV as:

24/5/2017

o(ep — ceX) = 0.45 £ 0.111937 ub.
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Real example: ZEUS charm

photoproduction
@ [
* Large energy o e ZEUS93 DATA
. g 10 E
extrapolation oo o lowenrwDATA T
s
§

* Tiny acceptance =2
~1.4% (and into

tricky regions such 'l
as low p; and high "
rapidity, hence ¥ A Y

10 10

high uncertainty) W (GeV)
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Real example: ATLAS W & Z cross
sections (toe, u), 7 TeV
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Standard Model Production Cross Section Measurements
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Something you can do once you
have made your “minimally model
dependent” measurements...

Jon Butterworth, David Grellscheid (IPPP), Michael Kramer, Bjorn
Sarrazin (Aachen), David Yallup (UCL) arXiv:1606.05296 (JHEP 2017 078)




Precision ‘Standard Model’
Measurements

* Theyshould not < wpp — " ———
(and mostly dO 3 10755 ILdt=4.5fb'1, 1s=7 TeV ; KL<5()|5|(:11.(:)°)(x10‘3)E;
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f Wy ©%00 ° ]

* They agree with E oo e %%%%O .
the SM 10-855 N ADDDDDDDDDDD ...."I.... ° e} EE

* Thus they can 10""E DDE‘%: "
potentially 00 0a, o =
exclude e T :
extensions R S

10 10

12/5/2017 JMB, MC4BSM p. [GeV] =2



Precision ‘Standard Model’
Measurements
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Key tools:
e BSM HEIEEE e Rivet, and
Model in e New data from
FeynRules processes HepData

in Herwig7/
UFO interface S -
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Key t0OIS: constraints On New Theories Using Rivet

/ \
- 2 -
e BSM HEIEEE e Rivet, and

Model in e New data from
FeynRules processes HepData

in Herwig7/
UFO interface S -
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Key t0OIS: constraints On New Theories Using Rivet

~

Final State
Particles
1ttpﬁcur

In HerW|g7

e Rivet, and
from
ata

UFO interface

https://contur.hepforge.org/
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Strategy

* Use measurements shown to agree with the
Standard Model

— Not a search! Guaranteed not to find anything

— Measurements take longer, but more general and less
model dependent

— (Currently) assume the data = the background!
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Although we probably

._.
<
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Strategy

* Use measurements shown to agree with the
Standard Model

— Not a search! Guaranteed not to find anything

— Measurements take longer, but more general and less
model dependent

— (Currently) assume the data = the background!

e Key for constraining new models if there is a
signal (unintended consequences)

e Key for constraining scale of new physics if there
is no signal
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Statistics

* Construct likelihood function using
— BSM signal event count
— Background count (from central value of data points)

— Gaussian assumption on uncertainty in background count, from
combination of statistical and systematic uncertainties

— BSM signal count error from statistics of generated events
(small!)
* Make profile likelihood ratio a la Cowan et al (Asimov data
set approximation is valid)

* Present in CL, method (A. Read)

e Systematic correlations not fully treated - take only the
most significant deviation in a given plot (conservative)
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Dynamic data selection

 SM measurements of fiducial, particle-level differential
cross sections, with existing Rivet routines

e Classify according to data set (7, 8, 13 TeV) and into non-
overlapping signatures

* Use only one plot from each given statistically correlated
sample

o Jets, W+jets, Z+jets, vy (+jets), vy, ZZ, W/Z+y

* Sadly no Missing E;+jets, not much 8 TeV, no 13 TeV yet,
though much is on the way... Also can use suitably model-
independent Higgs and top measurements in future.

* Most sensitive measurement will vary with model and
model parameters
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ConTUR Category

Rivet/ Inspire ID

Rivet description

ATLAS 7 Jets

CMS 7 Jets

ATLAS 8 Jets
ATLAS 7 Z Jets
CMS 7 Z Jets

CMS 7 W Jets
ATLAS W jets
ATLAS 7 Photon Jet

CMS 7 Photon Jet
ATLAS 7 Diphoton
ATLAS 7 ZZ
ATLAS W/Z gamma

ATLAS_2014 11325553 [28]
ATLAS_ 201411268975 [30]
ATLAS_ 201411326641 [32)]
ATLAS_2014 11307243 [31]

CMS_2014.11298810 [29]

ATLAS_ 201511394679 [34]
ATLAS_2013_11230812 [35]
CMS_201511310737 [38]

CMS_2014 11303894 [37]

ATLAS_ 201411319490 [36]
ATLAS_ 201311263495 [42]
ATLAS_ 201211093738 [44]
CMS_2014.11266056 [45]

ATLAS 201211199269 [43]
ATLAS_2012_11203852 [39]
ATLAS 201311217863 [40]

Measurement of the inclusive jet cross-section
High-mass dijet cross section
3-jet cross section

Measurements of jet vetoes and azimuthal decorrelations in
dijet events

Ratios of jet pT spectra, which relate to the ratios of inclusive,
differential jet cross sections

Multijets at 8 TeV

Z + jets

Jet multiplicity and differential cross-sections of Z+jets events
Differential cross-section of W bosons + jets

W + jets

Inclusive isolated prompt photon analysis with 2011 LHC data
Isolated prompt photon + jet cross-section

Photon + jets triple differential cross-section

Inclusive diphoton +X events

Measurement of the ZZ(x) production cross-section

W /Z gamma production
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Simplified Model(s)

L D gpm E’Ypﬁ'Sw Z'* + 9q Z qYu9q A

e Effective lagrangian including ’ e
minimal new couplings and 7 W 2,y
particles

Our starter example:
leptophobic 2" with vector
coupling to u,d quarks, axial
vector to a DM candidate 1.

q
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Parameter Choices

* Scanin Mg,, and M.,
* Four pairs of couplings:
— Challenging: 8,=0.25; gy =
— Medium: 8,=0.375; 8pu =
— Optimistic: 8, =0.5; Eom = 1
— DM-suppressed g, =0.375; gp, = 0.25
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Data Com

ATLAS Dijet double-differential cross sections (y* < 0.5)
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Data Com

ATLAS W+ > 2 jet differential cross section
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{c) go = 0.375 and gpm =1 (d) gq = 0.375 and gpnm = 0.25
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Low M, low coupling

2000

* V+jets has =
unexpectedly
good sensitivity
at low M. o T 2un-zan-

Mpm :G(‘\'V

Figure 4: Exclusion heatmap for g, = 0.25, gpn = 1.0 from the CONTUR white
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Figure 6: Exclusion heatmap for Mpy = 600 GeV and 500,000 events per .yoda
file, using data from several 7 TeV and 8 TeV ATLAS and CMS analyses. 20
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Look at “all flavours” model

* 8,=0.375

12/10/2016
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Look at “all flavours” model

* 8,=0.375
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Look at “all flavours” model

C. Donaldson (prelim.)
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Figure 6: Heatmap and 95% contour for the HF model for the 7 TeV hadronic Rivet
routines detailed in Table 3. Both plots are for fixed values of the couplings, where
gq = 0.375 and gpyr = 1. (a) shows the heatmap, and (b) shows the corresponding
pink contour, which indicates the excluded region at 95% CL. The blue shaded
triangular region in (b) shows the region in which perturbative unitary, as defined

12/10/2016 in Section 2.4, is violated.
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Look at “all flavours” model

C. Donaldson (prelim.)
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Figure 7: Heatmap and 95% contour for the HF model for the 8 TeV electroweak
Rivet routines detailed in Table 4. Both plots are for fixed values of the couplings,
where g, = 0.375 and gpy = 1. (a) shows the heatmap, and (b) shows the corre-
sponding pink contour, which indicates the excluded region at 95% CL. The blue

shaded triangular region in (b) shows the region in which perturbative unitary, as
12/10/2016 defined in Section 2.4, is violated.
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Look at “all flavours” model

C. Donaldson (prelim.)
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Figure 8: Heatmap and 95% contour for the HF model for all of the Rivet routines

for 7 TeV electroweak, 7 TeV hadronic, and 8 TeV electroweak combined, as shown in

Tables 2, 3, and 4. Both plots are for fixed values of the couplings, with g, = 0.375

and gpyr = 1. (a) shows the heatmap, and (b) shows the corresponding contour,

which indicates the excluded region at 95% CL. The blue shaded triangular region

in (b) shows the region in which perturbative unitary, as defined in Section 2.4, is
12/10/2016 violated.



Conclusions

* Particle-level measurements not only measure what is
happening in our collisions, they constrain what is not

happening.
* Limit-setting procedure developed; even with conservative

treatment of correlations, limits are competitive with those
from dedicated searches using comparable data-sets

* General framework developed:

— consider all new processes in a given (simplified) model
— consider all available final states. (e.g. V+jet shows previously
unexamined sensitivity to the model considered)

* Highly scaleable to other models & new measurements —
plan continuous rolling development

e See arXiv:1606.05296 (JHEP 2017 078) and references
therein, and hepforge.org/contur
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