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Outline

= Segmented silicon detectors for tracking and vertexing

= State-of-the art pixel detectors
— Hybrid pixel detectors
— Monolithic Active Pixel Sensors (MAPS)

= New developments
— Depleted MAPS
— Digital electromagnetic calorimetry with DMAPS at future colliders

= Conclusion

L. Gonella | Particle Physics Seminar, UoB | 8 November 2017

©0




Segmented silicon detectors

= Highly segmented silicon detectors have been used in particle and
nuclear physics experiments for over 40 years

— Technology of choice for tracking and vertex detectors

— They detect the passage of ionizing radiation with good spatial
resolution and efficiency

= The success of silicon detectors is due both to semiconductor
properties and evolution of silicon fabrication technology

= They consist of a sensing element (i.e. sensor) with its associated
readout electronics
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Sensor working principle

Silicon sensors work as a reverse
biased pn-junction (i.e. diode) t4

— High resistivity silicon bulk LALA

Cross section of a silicon sensor

ATA A=
amp lifier.

— Highly doped contacts e | d
The segmentation (pitch, d) defines ‘
the spatial resolution (o) W

High (reverse) bias voltage (V)
— Depletion
— Electric field

W Y, pVbias

Traversing charged particles create e-/h+ pairs
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Movement of charges (i.e. drift in electric field) towards the

electrodes generates a signal
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. . ATLAS FE-14 readout ASIC
Basics of readout electronics .

»»»»»

B
.....

= Mixed-mode Application Specific Integrated
Circuits (ASIC) in deep submicron
CMOS technologies

b
X
.......

= Signal processing functions per readout channel
— 1 readout channel per pixel
— Amplification and pulse shaping
— Analogue to digital conversion (for example comparator with threshold)

INCIDENT SENSOR PREAMPLIFIER PULSE ANALOG TO DIGITAL
RADIATION SHAPING DIGITAL DATA BUS
CONVERSION

o i I AN S m

H. Spieler, Semiconductor Detector Systems, Oxford University Press
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Tracking and momentum resolution
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Detector requirements
= Fine segmentation
= Large detector
= Low material
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Vertex resolution

= Vertex resolution
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Detector requirements

= Fine segmentation

= Low material (beam pipe and detector layers)
= First layer as close as possible to the beam pipe

= Large lever arm
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Challenges: high rate or high precision

= Physics and experimental conditions drive the detector requirements

— Granularity, radii and number of layers, readout electronics, material
budget, ...

= High rate experiments
— Proton-proton colliders
— Radiation hardness of sensor and ASIC
— Fast collection of large charge in the sensor
— High memory density and data throughput in ASIC

-> Hybrid pixel detectors

= High precision experiments
— e+t/e- colliders and heavy lons (HI) experiments
— High spatial resolution
— Thin detectors

- Monolithic Active Pixel Sensors
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State-of-the art pixel detectors:
Hybrid pixel detectors
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Hybrid pixel detectors in HEP

= ATLAS, CMS and ALICE use hybrid

pixel detectors close to the interaction
point

— Complemented by strip detectors at
large radii

= Largest pixel systems ever built in
HEP (~m?)
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Hybrid pixel detector concept

Sensor and readout electronics are separate
entities

— Separate optimization for high rate

Charge collection by drift in depleted bulk
— Large signal, rad-hard, fast charge collection
Complex readout in ASICs
— Zero-suppression and in-pixel hit buffering
— Time resolution O(ns)

Moderate spatial resolution O(10-100 pum)
High material budget, few %X0
— Power hungry devices

High cost
— Sensor and hybridization

front-end
chip

pixel
detector

particle
track
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Technology enablers for hybrid pixels

= The development of IC technologies for the consumer
electronics market in the 90s enabled the development of pixel
detectors for the LHC

— Planar process and photolithography

— VLSI (Very Large Scale Integration) in deep submicron CMOS
technologies

— Fine pitch bump bonding and flip chip
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The ATLAS Insertable B-Layer detector

= 4 ATLAS pixel detector layer inserted at 33.5 mm radius in 2013-
2014

— Maintain and improve robustness and performance of tracking and
vertexing during the LHC Phase 1

= New sensor and electronic technologies radiation tolerant up to
5E15 n,,/cm? and 250 Mrad

= Lightweight detector design: 1.88% X0

— Low mass module design, low density carbon foam support structures,
CO2 evaporative cooling, aluminium conductor for power cables

IBL planar sensor module

o 200 pm thin sensor
) b, 150 pm thin ASIC
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Planar sensors for high luminosity

Sensor designed optimized to guarantee high E-field, short drift

distance and fast charge collection after fluence up to 1E16 n,,/cm?
— Minimize trapping due to radiation-induced defects in silicon bulk
= Thin sensors (100-150 ym) with optimized edge region and guard
rings structure withstanding V,,;,c up to 1 kV
— Improved breakdown behavior after irradiations

Hit efficiency [%]

n' pixel (0V) Guard Rings

p-substrate

(b) n-in-p

S. Terzo, https://publications.mppmu.mpg.de/2015/MPP-2015-291/ull | ext.pdt

0~

Hit efficiency above 90% at 1E16 n,,/cm?

100 um thin n-in-p
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3D sensors for high luminosity

= First application in the IBL detector
= (Geometrical radiation tolerance

= Particle path different from drift path
= High field with low voltage

— Short charge collection distance (30-50 um)

— Fast response

= Hit efficiency of ~99% at ~1E16 n,/cnm?
with V... <200 V 5
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Evolution of readout architecture

= Early generation of pixel readout chips (ATLAS FE-I3) was based on
column drain architecture

= This architecture become inefficient at the IBL radius above nominal
LHC luminosity - congestion in double column (DC) readout bus

= Store hits locally and move only if triggered - regional readout
architecture (ATLAS FE-I4)

— Reflects the cluster nature of physics hits

— Groups of 2x2 pixels share digital logic, i.e. memory and time
information - cluster charge stored with less information

Column drain architecture Regional Readout architecture

Pixel Pixel > Local <«

buffer
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Readout for HL-LHC innermost layers

= Analog “islands” in a digital synthesized

13 7

sea
= Collection of large digital cores containing
many regions
— Complex functionality in the pixel matrix
— Resources shared among many pixels
= 2 dimensional digital connectivity ATLAS
= Smart clustering in the pixel matrix to send
most information with least bandwidth

Single analog Example of
Front End square pixel 5
on sensor = 1
o ‘ - 200 pile up
Digital “sea” Bump bond
location
Analog

“island”

N. Wermes, https://indico.cern.ch/event/556692/
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FE-13, FE-14, FE65

= Availability of smaller CMOS technology nodes
— Higher logic density (more memory/unit area)
— Smaller pixels

FE-I4

— Higher throughput
— Radiation hardness (technology & layout)
FE-I3 FE-14 FE65
LHC Run 1 LHCrun2 & 3 HL-LHC Run 4-5

Tech node 250nm 130nm 65nm
Chip size [mm?] 7.4 x 11 18.8 x 20.2 > 20 x 20
# transistors 3.5M 87M 1G
Hit rate [Hz/cm?] 100M 400M 2G
Output bandwidth | 40 — 60 Mb/s 0.3-1.2 Mb/s 2 - 20 Gb/s
Pixel size [um?] 400 x 50 250 x 50 50 x 50
# readout channels | 18 x 160 336 x 80 TBD
TID [rad] 100M 200M 1G
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State-of-the art pixel detectors:
Monolithic Active Pixel Sensors (MAPS)
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Monolithic Active Pixel Sensors

= Sensor and electronics are implemented in the same silicon
substrate

— Modified CMOS process

= Charge collection primarily by diffusion in the epitaxial layer
— Small signal, moderate radiation hardness, slow

= Simple readout architecture
— Simple in-pixel circuitry and limited hit storage
— Time resolution = O(us)

= High spatial resolution O(1-5 pm) | o
= Low material budget, < 0.5% X0 [* X e - m
— Low power / e
= Lower cost / e substte 28
— Commercial process 7 pare v
A L
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MAPS in HI experiments

= The first use of MAPS detectors in physics
experiments was at STAR Heavy Flavour
Tacker (HFT) at RHIC

— Detector area = 0.15 m?2
— ULTIMATE-2 sensor
— Data taking since 2014

= MAPS have been chosen for the ALICE
Inner Tracking System (ITS) upgrade at
LHC

— Detector area = 12 m?2
— ALPIDE sensor
— Data taking to start in 2020
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ALPIDE sensor for ALICE ITS

= Towerdazz 180nm CMOS imaging process
= Partial depletion at V. = 6V, but charge collection still mostly by

diffusion

= Efficiency > 99.5% and fake hit rate < 10-° over wide threshold
range up to 1e13 (1MeV n,,)/cm?
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New developments:
Depleted MAPS
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MAPS evolution
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CMOS imaging technologies

= The camera phone market pushed the development of CMOS
Imaging technologies since the 90s

= Wrt. CCDs, CMOS imaging sensors have low power, and more
integrated logic functionalities

Technology x Market Penetration
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Technology overview

Commercial CMOS technologies featuring high voltage capabilities
and/or high resistive substrate

[ | photonics
cpC N
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DMAPS layout options

= Large collection electrode = Small collection electrode
— Electronics inside the — Electronics outside the
collection electrode collection electrode
— Large sensor C - higher — Full depletion with
power, higher noise additional n implant
— Full CMOS w/ isolation — Small sensor C 2 low
between NW and DNW power, low noise
(quadrupole well process) — Full CMOS with additional
deep p-well (triple well
process)
Charge signal Charge signal
— Electronics (full CMOS) Electronics (full CMOS)
- Q
p-substrate p-substrate

W;
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Large collection electrode with LFoundry

30um

= LFoundry 150 nm CMOS process

= Depletion at 1E15 n.,/cm? ~50-60 um
depletion

= Hit-efficiency measured in test beam <
is above 99.9% after 1E15 n,,/cm?
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Small collection electrode with TJ

= Modified Towerdazz 180nm CMOS imaging process

= Recent development by CERN/TJ* to improve the radiation
hardness of the TJ 180nm CMQOS process

= Deep planar junction in epi layer to allow lateral depletion below
the electronics
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"W. Snoeys et al, NIMA 871 (2017) 90-96 WJ L
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TJ modified process

= Signal size unchanged after neutron irradiation to 1E15 n,,/cm?
— No signal after 1E14 n,,/cm? in standard process

= Spread in charge collection time at 1E15 n,,/cm? lower than for
standard process before irradiation, 2.78ns vs 4.6ns

Relative frequency
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Depletion reaches lateral regions and charge is collected by drift

H. Pernegger et al., 2017 JINST 12 PO6008
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Advantages of depleted MAPS

= Commercial technologies
— Low cost
— High throughput
— Multiple vendors
=  Simplified module concept
— Ease of construction
= Thin sensing layer (20-100 pm)
— Possible constant charge collection volume with dose
— Reduce cluster size at large eta

= Charge collection by drift and full CMOS electronics (but not yet
outperforming hybrid pixels!)

- Candidate for outer pixel layers at the HL-LHC (~10m?)
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New developments:
Digital electromagnetic calorimetry with DMAPS at future
colliders

60
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Digital Calorimetry with MAPS

= Dates back to ~2005 work within CALICE for linear colliders
— See work with TPAC, FORTIS, and CHERWELL sensors

= Make a pixelated calorimeter to count the number of particles in
each sampling layer to reduce uncertainties due to Landau
fluctuations of energy deposits

= Small pixels to avoid undercounting and non-linear response in
high particle density environments

= Proposed ILD ECAL has a silicon area of ~2400m?. Digital variant
would require 10'2 pixels. Requires low cost, ease of
construction, low power

W WY

Analogue: 5Smm pitch Digital: 50um pitch
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DECAL for FCC-hh

= DECAL for hadron colliders will have additional complexities such as

pile-up, much higher energy jets, higher radiation environment ->
DMAPS

= Reconfigurable, radiation hard DMAPS for outer tracking and
calorimetry
— Birmingham, RAL (PPD & TD), Sussex
— Targeting 1E15 n,/cm? (ECAL barrel region at FCC-hh)
— Complementary technology as a pre-shower / outer tracker

— Seamless transition from outer tracker to ECAL possible with same
technology

= Chip design informed by detector simulations using the FCC
simulation software

L. Gonella | Particle Detectors and Instrumentation UK | 25 September 2017
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DECAL chip development

= Specs
— 50 x 50 ym? pixels
— 4 collection electrodes/pixel
— 25 ns readout
— 64 x 64 pixel matrix, 5 mm?

= Submission

— The DECAL chip was submitted in May in the standard TJ process,
testing started a couple of weeks ago

— Test structures have been submitted in the modified TJ process in
September

= Radiation hardness

— Target radiation hardness to be demonstrated with passive test
structures in the TJ modified process m

— Radiation-hardness of DECAL chip in standard process possibly
enhanced by multiple collection electrode configuration

W;

60

L. Gonella | Particle Detectors and Instrumentation UK | 25 September 2017 35



Reconfigurability £ :

= Pixel mode
— Read out address for every pixel that fires
— Not available in this iteration -

= Column mode

— Read out hit column addresses, and up to 3
hits/column

— Flag set if >3 hits/column
— Quter tracking and possibly pre-shower

= Pad mode

— Sum the number of hit pixels in a 5x5mm? pad and
readout this value

— Reduced number readout channels and data rate
by not reading every hit pixel address in 25ns but
combining information in each 5x5mm? pad using
fast logic

— Calorimetry

il
e

=

i

60

W;

L. Gonella | Particle Detectors and Instrumentation UK | 25 September 2017 36



Conclusion

= Pixel detectors are the technology of choice for tracking and
vertexing

= Different concepts have been developed to cover both high rate and
high precision demands from different experiments

= Development of monolithic pixel detectors with commercial CMOS
technologies is bringing together the advantages of both hybrid and
MAPS detectors and offers an attractive low cost solution for future
large area tracking detectors and calorimeters

= Many more developments ongoing...

— Diamon sensors, 4D detectors, low mass and efficient powering
schemes, lightweight support structures, wire-bond free modules, ... 20
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