Current and Future Long Baseline Neutrino Experiments

Lee Thompson University of Sheffield

Birmingham Particle Physics Group 29th October 2014

I ragazzi di Via Panisperna (The birth of the neutrino)

Edoardo Amaldi, Emilio Segrè, Franco Rasetti, Ettore Majorana, Enrico Fermi, Bruno Pontecorvo

 Fermi: 1939 Nobel Prize for Physics: "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons"

 Segrè: 1959 Nobel Prize for Physics: discovery of the anti-proton

The birth of the neutrino

- Pauli: postulated the existence of the neutrino in 1930 to explain the conservation of energy and momentum in beta decay a third particle must be produced, electrically neutral and with very low mass, so not observed
- Fermi: named the particle 'neutrino' in 1933
- Pauli: "I have done something very bad today by proposing a particle that cannot be detected. It is something that no theorist should ever do."

Can we see them?

• 1934: Pauli predicts

 $\sigma(\nu p) \simeq 10^{-44} \, \mathrm{cm^2}$ for 2MeV ν

• 1934: Bethe and Peiels calculate

$$\lambda_{lead} \sim \frac{1}{N_A \rho \sigma} = \frac{1}{6.10^{23} (nuc/g) \times 7.9 (g/cm^2) \times 10^{-44} (cm^2)}$$

at these neutrino energies the interaction
length in Lead is ~ 22 light years
tiny cross-sections means huge detectors

Experimental Discovery

- Use a huge flux (of order 10¹³ cm⁻² s⁻¹)of (anti-)neutrinos from a nuclear reactor
- Observe the reaction $\overline{v_e} + p \rightarrow e^+ + n$ in 200l water tanks loaded with ~40kg of CdCl₃ $^{108}Cd + n \rightarrow ^{109m}Cd \rightarrow ^{109}Cd + \gamma$
- Unique co-incidence of 2 gamma rays from the e⁺e⁻ annihilation and neutron capture and subsequent photon signal 5µs later. Gammas observed in liquid scintillator
- Devised by Cowan and Reines in 1956/9 (latter Nobel Prize in 1995)

Solar neutrino experiments

- Either radiochemical (Cl or Ga) or Cerenkov radiation
- Homestake neutrino experiment
- 100,000 gal of dry cleaning fluid
- Neutrino threshold 800 keV
- Number of ³⁷Ar atoms counted

Homestake results

1 SNU = 10⁻³⁶ captures /atom/second

Solar neutrino results

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Atmospheric Neutrino Experiment

- "SuperK"
- A water Cerenkov detector
- 50,000 tons of water under a mountain in Japan
- Higher neutrino thresholds (~5 MeV)

SuperKamiokande Results

A possible explanation

- Solar neutrino anomaly
 - Solar neutrino experiments on sensitive to electron neutrino charged current interactions
 - Experiments are OK, theory is OK
 - What if the neutrinos change to a different neutrino flavour as they propagate from the source to the detector?
 - So, e.g. if some of the $v_e \rightarrow v_\mu$ or v_τ then the observed v_e flux would be less than expected
 - Can we devise an experiment that is sensitive to neutral current interactions instead?
 - Time for the Sudbury Neutrino Observatory (SNO)

The SNO experiment

• 6500 tons of H₂0

• 2km underground

The SNO experiment

$$c v_e + d \rightarrow p + p + e^{-}$$

- Q = 1.445 MeV
- good measurement of v_e energy spectrum
- some directional info $\propto (1 1/3 \cos \theta)$

- Ve only

$$\nu_x + d \rightarrow p + n + \nu_x$$

-Q = 2.22 MeV

measures total ⁸B v flux from the Sun
 equal cross section for all v types

$$v_x + e^- \to v_x + e^-$$

- low statistics
- mainly sensitive to v_e , some v_{μ} and v_{τ}
- strong directional sensitivity

Produces Cherenkov Light Cone in D₂O

n captures on deuteron 2 H(n, γ) 3 H Observe 6.25 MeV γ

Produces Cherenkov Light Cone in D₂O

SNO results

• ν_{e} to $\nu_{\mu\tau}$ oscillations confirmed!

Combined Results

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

SuperK results (assuming oscillations)

• Reinterpretation of SK results assuming that some fraction of the CR v_{μ} have oscillated to v_{τ} (that SK is not sensitive to)

Interpretation

- As a neutrino propagates from source to detection point then the neutrino flavour at the source and at the detection point some time/ distance later are not the same
- This is known as neutrino oscillation or mixing
- Neutrino oscillation is a quantum mechanical effect
- The neutrino weak eigenstates and mass eigenstates are not the same (are not 'aligned')
- The neutrino propagates in the mass eigenstate but interacts in the weak eigenstate
- NB this can <u>only</u> happen if neutrinos have mass
- "Beyond Standard Model" physics

3 neutrino mixing

- Neutrino oscillations have now been unequivocally observed using atmospheric, solar, reactor and accelerator neutrinos
- The weak and mass neutrino eigenstates are related via the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \text{ where}$$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \\ s_{ij} = \sin\theta_{ij}, c_{ij} = \cos\theta_{ij}, \delta = \text{CP violating phase} \end{pmatrix}$$

- <u>Known knowns:</u> neutrinos have mass and oscillate between flavours; θ_{12} , θ_{23} , θ_{13} , Δm_{21}^2 , $|\Delta m_{32}^2|$ all measured
- <u>Known unknowns</u>: absolute masses, order of mass states (mass hierarchy), Dirac or Majorana, value of δ_{CP} , is θ_{23} maximal / which octant, number of neutrinos

3 flavour mixing

• In the above the different matrices relate to different measurements:

Oscillation Probabilities

• In general:

$$P(v_{\alpha} \rightarrow v_{\beta})_{(\alpha \neq \beta)} = -4 \begin{bmatrix} U_{\alpha 1} U_{\beta 1} U_{\alpha 2} U_{\beta 2} \sin^{2}(1.27 \frac{\Delta m_{12}^{2} L}{E}) + \\ U_{\alpha 1} U_{\beta 1} U_{\alpha 2} U_{\beta 3} \sin^{2}(1.27 \frac{\Delta m_{13}^{2} L}{E}) + \\ C_{13} \\ U_{\alpha 2} U_{\beta 2} U_{\alpha 2} U_{\beta 3} \sin^{2}(1.27 \frac{\Delta m_{23}^{2} L}{E}) \end{bmatrix}$$

$$P(v_{\alpha} \rightarrow v_{\beta})_{(\alpha \neq \beta)} = -4 [c_{12} \sin^{2}(1.27 \delta m^{2} L/E)]$$

$$\Delta m^{2} = \Delta m^{2}_{13} \sim \Delta m^{2}_{23} (\text{solar, large}) + c_{13} \sin^{2}(1.27 \Delta m^{2} L/E) \\ \Delta m^{2} = \Delta m^{2}_{12} (\text{atmos, small}) + c_{23} \sin^{2}(1.27 \Delta m^{2} L/E)]$$

Oscillation vs L/E

Long baseline accelerator neutrino physics

- Uses v_{μ} (\overline{v}_{μ}) beams derived from proton-induced pion decay
- ν_{μ} disappearance is sensitive to θ_{23} and (subleading) to the octant

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - 4\cos^{2}(\theta_{13})\sin^{2}(\theta_{23})[1 - \cos^{2}(\theta_{13}) \times \sin^{2}(\theta_{23})]\sin^{2}(1.267\Delta m^{2}L/E_{\nu})$$

• v_e appearance is sensitive to θ_{13} and (subleading) to the CP phase δ

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E}$$
$$- \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin \theta_{13}} \sin \frac{\Delta m_{21}^{2} L}{4E} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} \sin \delta_{CP}$$

T2K (Tokai to Kamioka)

- 295km long baseline experiment
- Uses 2.5° off-axis v_{μ} (\overline{v}_{μ}) beam
- Data-taking started in 2009
- UK contribution to near detector (ND280) includes:
 - Electronics
 - DAQ
 - ECAL
- SK far detector

T2K v_{μ} disappearance results Events/0.10 GeV 120 selected events DATA 60 Observation of a deficit Best-fit Expectation with Oscillations of v_{μ} events in SK MC Expectation without Oscillations 4020 $\Delta m^2_{32} (10^{-3} \, eV^2)$ 3.2 68% (dashed) and 90% (solid) CL Contours oscillations MC Best-fit Ratio to no T2K [NH] 2.6 >5 3 Reconstructed v Energy (GeV) 2.4 Best fit values: 2.2 $\sin^2\theta_{23}$ (NH) = 0.514 0.4 0.45 0.5 0.55 0.6 0.65 0.7

• Δm_{32}^2 (NH) = 2.51x10⁻³ eV²

Analysis published in Phys. Rev. Lett. 112, 181801 (2014)

 $\sin^2(\theta_{23})$

T2K v_e appearance results

Analysis published in Phys. Rev. Lett. 112, 061802 (2014)

- Results from a combined likelihood ratio fit to the T2K ν_{μ} and ν_{e} CCQE samples
- Using the PDG 2013 value for θ_{13} there is a preference for $\delta_{CP} \approx -\pi/2$ and normal mass hierarchy
- Very similar results from an independent analysis based on Markov chain MC

T2K ND280 and systematic errors

Flux and cross-section systematic uncertainty on $N_{_{SK}}$ significantly reduced to ~7%

MINOS / MINOS+

Cambridge • Oxford • STFC/RAL • Sussex • UCL

- MINOS
 - 735km baseline, FNAL to Soudan
 - 1kt near detector 1km from source
 - 5.4kt far detector
 - Both ND and FD are steel-plastic scintillator calorimeters
 - UK contributions
 - DAQ, electronics, PMT testing, light injection

MINOS+

- Uses updated NUMI beamline
- Higher energy (cross-checks with different beam and cross-section systematics
- More statistics (4000 ν_{μ} CC events/ year in far detector)

MINOS/MINOS+ combined fit

Three-Flavor Oscillations Best Fit

Inverted Hierarchy $|\Delta m_{32}^2| = 2.37^{+0.11}_{-0.07} \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.43^{+0.19}_{-0.05}$ $0.36 < \sin^2 \theta_{23} < 0.65$ (90% C.L.)

Normal Hierarchy $|\Delta m_{32}^2| = 2.34^{+0.09}_{-0.09} \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.43^{+0.16}_{-0.04}$ $0.37 < \sin^2 \theta_{23} < 0.64 (90\% \text{ C.L.})$

Most precise measurement of |Δm²₃₂|
 Consistent with maximal mixing

Sousa, Neutrino 2014

• Other interesting results on sterile neutrinos, etc.

NOvA experiment and status

- 93% of APDs cooled down to -15C
- Now fully instrumented
- 1-2 month accelerator shutdown now, 500kW beam expected afterwards
- UK contribution: data driven trigger, stopping muon calibration, v_{μ} analysis

NOvA CC candidate event

NOvA cosmic muon event

 55m long cosmic ray muon passing through the 13 di-block detector configuration

Current understanding

- Uses LBL, SBL, reactor, solar, atm data
- Uses technique in Capozzi et al. PRD 89 (2014) 093018)

HyperK beam and detector

- 295km baseline
- Large volume water Cerenkov
- 990kT total volume
- 560kT fiducial volume
- 99,000 PMTs (20% coverage)
- 10 optically isolated compartments each x2 SK

- J-PARC $v_{\mu} (\overline{v}_{\mu})$ beam upgraded to ≥ 0.75 MW
- 2.5° off-axis, narrow band
 600MeV beam

HyperK status

- In 2013 Japan granted a 5 year £2.3M R&D grant which includes provision for a prototype detector (+\$1.2M)
- In early 2014 the Science Council of Japan selected HyperK as one of its top 27 scientific projects in its 2014 Master Plan
- Discussions with Japanese funding agency, MEXT, in progress for longterm funding
- Current International Working Group >240 people
- Funding requests submitted in UK, EU, Canada and Switzerland
- UK represents the second largest group of scientists after Japan

HyperK timeline

- 2015 Full survey, Detailed design (3 years)
- 2018 Excavation start (7 years)
- 2025 Start operation

HyperK sensitivity to CP

HyperK UK involvement

Edinburgh • Imperial • Lancaster • Liverpool • Oxford QMUL • RHUL • Sheffield • STFC/RAL • Warwick

Work Package	Deliverables
WP1: Physics, Software and Computing	interface GENIE neutrino interaction generator with Hyper-K; software release and data distribution
WP2: Detector R&D	design of TITUS, a water Cerenkov near detector TITUS; inform the decision on Gd-doping; selection of the photo-sensor technology for near and far detectors; conceptual design of HPTPC near detector.
WP3: DAQ	Design of a functional, flexible system that will meet the physics requirements of the experiment. A small-scale DAQ test system will be demonstrated using a prototype detector located in Japan.
WP4: Calibration	Delivery of a fibre-coupled pulsed light source; Fixed point diffuser; Pseudo-muon light source.
WP5: Beam	Identify critical materials issues for reliable beam window and target operation at multi-MW beam powers; specify materials test programs; select preferred target technology and plan the necessary research programme

HyperK UK WP2 Detector R&D

- TITUS
 - 2kt Water Cerenkov near detector instrumented with HPCs and LAPPDs situated at 2km from beam source
 - Possibly Gd doped to improve $\nu/\overline{\nu}$ separation and background rejection
- Design of HPTPC to reduce cross-section systematics down to ~ 2%
- PMT/LAPPD studies

HyperK UK WP4 Calibration

- Pseudo light-source:
 - Short duration light pulses from LEDs
 - Light coupled into optical fibres
 - Fibre ends inject light directly into the detector
 - Illuminate multiple PMTs on other side of a tank
 - Continuous low pulse rate operation during data taking
 - Electronics (which may require intervention) is easily accessible
 - LED pulser circuit designs under consideration include modified Kapustinsky, 4 MOSFETs in H bridge
- Pseudo-muon light source:
 - Objective is to inject a Cherenkovlike cone of light into the detector
 - Can be achieved using a short, narrow transparent (acrylic) tube along with a light source which produces almost parallel light
 - Different muon momenta can be simulated by using different lengths

Water Č: Gd loading

- Turn a standard Water Cherenkov detector into a antineutrino detector by loading with ~0.2% water soluble Gd
- Use delayed (~30µs) coincidence
 of γ and e⁺

- The problem is that you need to completely remove the Gadolinium Sulphate when necessary → need a selective GD filtration system
- New system based on nanofiltration. Molecular band-pass filter analogous to electrical equivalent
- EGADS: 200ton Gd demonstrator close to Super-K
- Initial results show 66% Č light left at 20m with Gd c.f. 71% to 79% without

- Far detector
 - 10kt/34kt fiducial volume at 4850ft
 - 2 TPC modules each ~14m x 22m x
 45m in the same cavern
 - Cosmic backgrounds ~ 0.1Hz

Liquid Argon TPCs

- Why Liquid Argon?
 - High density, cheap
 - + Dense → good target
 - Excellent dielectric properties support large voltages
 - Free electrons from ionizing track can be drifted in long distances inLAr
 - Electron cloud diffusion is small
 - High scintillation light yield (at 128nm) can be used for triggering

- Why a Liquid Argon TPC?
 - Combines the principles of a gaseous TPC with a LAr calorimeter
 - Fine grained tracking
 - High granularity dE/dX
 - True 3D imaging with mm-scale spatial resolution
 - Excellent PID
 - Constantly sensitive

Liquid Argon TPCs: Challenges

Technical challenges:

- to achieve long drift distances ultra-high purities (better than 100 ppt O₂ equivalent) are required
- Drift field requires HV on the cathode
- Operation of large wire chambers at cryogenic temps
- No charge amplification in liquid → fC charges requiring sensitive preamps
- Large number of R/O channels
- Large cryogenic systems

Liquid Argon TPCs: performance

- Tracking Performance:
 - Data taken in test beams with prototypes (e.g. 250l T32 experiment at J-PARC)
 - Hit charge distribution fitted well with Birks Law

$$Q = A \frac{Q_0}{1 + (k/\varepsilon) \times (dE/dx) \times (1/p)}$$

- Calorimetric Performance:
 - ICARUS data (2004) with Michel electrons from stopping muon decay

$$\frac{\sigma_E}{E} \approx \frac{11\%}{\sqrt{E}} \oplus 4\%$$

MC expectations (higher E):

$$\frac{\sigma_{EM}^{MC}}{E} \approx \frac{3\%}{\sqrt{E}} \oplus 1\% \qquad \frac{\sigma_{HAD}^{MC}}{E} \approx \frac{15\%}{\sqrt{E}} \oplus 10\%$$

LAr prototyping activities

- LBNE 35 ton prototype due to take data at FNAL in early 2015
- LAr1-ND, 82t TPC for MicroBoone (2017)
- Other activities ArgoNeut, LARIAT etc.

- Plans to test full scale LBNE drift cells in 8m x 8m x 8m cryostat at CERN (WA105)
- Programmes provide short term physics and analysis opportunities

LBNE status

- DOE CD-1 preliminary baseline approval in December 2012
 - DOE commitment of \$867M to LBNE
 - Plus PIP-II for 1.2MW beam total of \$1.5B
- Funding bids in process/successful in UK, India, Brazil, Italy
- External resources needed to support fully-scoped project
- UK is largest non-US group represented ~10% of collaboration

LBNE Timeline

• Schedule is strongly dependent on involvement of new international partners

LBNE far detector appearance event rates

- Based on 3 years ν and 3 years $\overline{\nu}$ running
- GLoBES simulation with global smearing and efficiencies based on ICARUS
- Typically 1000 events in neutrino run and 300 events in anti-neutrino run for v_e appearance channel

LBNE CP and MH sensitivity

- Mass hierarchy is well determined over most of δ_{CP} range
- CPV > 3σ over most of range and > 5σ for maximal CPV
- Atmospheric neutrinos in LBNE provide
 - an independent $\Delta \chi^2$ = 4 cross-check on MH
 - ~1 σ increased CPV sensitivity if combined with beam

Exposure 245 kt.MW.yr 34 kt x 1.2 MW x (3v+3v) yr

LBNE UK involvement

Cambridge • Lancaster • Liverpool • Manchester • Oxford Sheffield • STFC/RAL • Sussex • UCL • Warwick

Work Package	Deliverables
WP1: Physics Simulation and Experiment Design	Oscillation physics simulation; GENIE-LArSoft interface; Near detector design studies; Target and beam design; Beam systematics study;
WP2: Neutrino Event Reconstruction	Pattern recognition software (PANDORA) and interface to LArSoft; neutrino event reconstruction;
WP3: DAQ	DAQ for 35t prototype; data compression and event triggering; DAQ architecture design and prototyping.
WP4: 35t Prototype	HV monitoring cameras; operation and commissioning; simulation and data analysis; rejection of cosmic-induced backgrounds.
WP5: TPC Design and Construction	LAr1-ND APA and CPA frame design, wiring, cold-testing, construction and installation; LBNE APA and CPA design.

LBNE UK WP2 Event Reconstruction

- Neutrino events in a LAr TPC give high resolution, bubble-chamber like images
- The challenge is to go from this to reconstructed physics quantities
- PANDORA-based event reconstruction and LAr pattern recognition tools being developed

LBNE UK WP5 APA design

- APA wiring frame concept design
- LAr1-ND: UK proposes to build
 - One of the two APAs
 - The CPA and HV feedthrough

 UK-built 35t APA undergoing LN₂ cool down tests

CHIPS concept

Manchester • UCL

- CHIPS is a water Cherenkov detector which will be sunk in a flooded mine pit in the path of the NuMI beam
- Water will provide mechanical support
- Its main development goal is to chart a new path towards cost effective Megaton neutrino detectors, hoping to get to \$200k/kt (presently \$1M/kt)
- Complements NOvA (being more on-axis) and LBNE (more off-axis) when redeployed in the LBNE beam
- Consists of a series of prototypes which will deliver physics results and demonstrate real costs for (O)100kt
- Proposed site is the Wentworth pit in Minnesota
- UK-led work packages include
 - Simulation and reconstruction
 - DAQ
 - In-situ calibration

Aqualine FrøyaRing Sinker Tube

CHIPS Physics Goals

- Short term:
 - Contribute to the measurement of $\delta_{\rm CP}$ using neutrinos from the NuMI beam by measuring the sub-dominant $\nu_{\rm e}$ appearance and rejecting the NC background
 - Building and instrument a 10kt prototype

- Medium term:
- ~25kt (TBD) vessel to follow)
- Yearly increase of instrumented mass depending on funding
 - Deployment seasonal
 - Large up-front funding not necessary
 - Staging of detector(s) natural
- Long term:
- Re-deploy CHIPS in LBNE beam off axis
- 2nd oscillation maximum located around 0.8 <u>GeV</u>
 - Large quasi-elastic x-section
 - Suitable for water Cerenkov detector
 - High efficiency for QE events

Conclusions

- Neutrino oscillations are now well-established and we are in a phase of accurately measuring the parameters of the PNMS mixing matrix
- In recent years we have definitively measured a non-zero $\theta_{\rm 13}$ mixing angle opening the door to a search for CP violation
- Current and proposed projects have excellent prospects for measuring $\delta_{\rm CP}$ and determining the neutrino mass hierarchy
- There is a well-defined global programme of long baseline experiments reaching well into the 2020s