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Outline

• Quark flavour & Lattice QCD 

• DiRAC facility 

• Example: |Vcb| from B → D* l ν
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Quark Flavour 
& 

Lattice QCD



Motivation
• Precision predictions & measurements of quark flavour 

interactions 

• Is the Standard Model description of EWSB complete? 

• If not, quark flavour measurements constrain models of new 
physics 

• Experimental measurements of hadron decays: increasing 
precision, new modes 

• Precision QCD calculations required in order to make 
inferences about quark interactions
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Quark flavour physics
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http://ckmfitter.in2p3.fr/


CKM matrix from Higgs couplings
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LH SU(2) doublets RH SU(2) singlets

Interact with gauge bosons in covariant derivative

Gives rise to weak current

The coupling to the Higgs field is not apparently diagonal in generation

Fields may be transformed to mass basis

Showing the weak current allows mixing between generations
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uūi

Lui
R + h.c.

�

LH SU(2) doublets RH SU(2) singlets

Interact with gauge bosons in covariant derivative

Gives rise to weak current

The coupling to the Higgs field is not apparently diagonal in generation

Fields may be transformed to mass basis

Showing the weak current allows mixing between generations



CKM matrix from Higgs couplings

6

Lquark = Q̄i
L i /D Qi

L + ūi
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uūi

Lui
R + h.c.

�

LH SU(2) doublets RH SU(2) singlets

Interact with gauge bosons in covariant derivative

Gives rise to weak current

The coupling to the Higgs field is not apparently diagonal in generation

Fields may be transformed to mass basis

Showing the weak current allows mixing between generations



CKM matrix from Higgs couplings

6

Lquark = Q̄i
L i /D Qi

L + ūi
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Lattice QCD
• Use methods of effective field theory and renormalization 

to turn a quantum physics problem into a statistical 
physics problem 

• Quarks propagating through strongly interacting QCD 
glue + sea of quark-antiquark bubbles 

• Numerically evaluate path integrals using Monte Carlo 
methods: importance sampling & correlation functions 

• Numerical challenge: solving M x = b where M is big and 
has a diverging condition number as amq ➙ 0 (vanishing 
lattice spacing × light quark mass)
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Lattice QCD in a nutshell
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⟨J(z′)J(z)⟩ =

1

Z

∫
[dψ][dψ̄][dU ] J(z′)J(z) e−SE

⟨J(z′)J(z)⟩ =

1

Z
Tr

[

J(z′)J(z) e−βH
]

QFT : Imaginary-time path integral

SFT : Sum over all microstates

Use the same numerical methods!

Monte Carlo Calculation : Find and use field 
“configurations” which dominate the integral/sum



Lattice QCD in a nutshell
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⟨Θ⟩ =
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∣
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ζ, ζ̄ → 0



Lattice QCD in a nutshell
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Lattice QCD in a nutshell
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Partial quenching =
different mass for valence         than for seaQ−1
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Lattice QCD

• Imaginary time formulation: path integrands real, non-negative 

• Discrete lattice points: regulates field theory 

• Sharply peaked path integrand: permits importance sampling

Lattice volume

Lattice spacing

Heavy quark mass

Light quark mass

L � 1/m�

a � 1/�QCD

mQ � 1/a

m� � m�,4�f�
Chiral pert. th. 

Brute force

Chiral pert. th. 
Brute force

Symanzik EFT

NRQCD, HQET
Extra-fine, extra-improvementmQ < 1/a

mQ � 1/a Fermilab

Systematic error Controllable limit Theory

h�⇡(z)Vµ(y)�B(x)i =
1

Z

ZZZ
[d ][d ̄][dU ]�⇡(z)Vµ(y)�B(x) e�S[ , ̄,U ]



Meson mass splittings

CTH Davies, [HPQCD Collaboration website]
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http://www.physics.gla.ac.uk/HPQCD


Decay constants

CTH Davies, [HPQCD Collaboration website]
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http://www.physics.gla.ac.uk/HPQCD


Rare b decays
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s

W W

t

ν

ℓ ℓ

b

t

W

γ, Z

sb

Flavour changing neutral decays

B ! K⇤`+`� Bs ! �`+`�

Horgan et al., (HPQCD) arXiv:1310.3722, arXiv:1310.3887

penguin box

originating from the following sources: the form factor
uncertainties [23], an estimated 2% uncertainty in the
values of the Wilson coefficients Ci [49], the uncertainties
in the B0 and B0

s meson mean life times, the uncertainty in
jVtbV!

tsj, and an estimated additional 5% systematic uncer-
tainty in the vector amplitude (Aμ þ T μ) in Eq. (9), which
is introduced by the truncation of the OPE and duality
violations [42,43]. Note that S-wave pollution is expected
to be negligible at large q 2 [50].
In Fig. 1, we also show experimental results, which are

given for the bins 14.18 GeV2 < q 2 < 16 GeV2 (bin 1)
and 16 GeV2 < q 2 < 19 GeV2 (bin 2). Some of the
observables have only been measured by LHCb
[14,51,52]. For the B0

s → ϕμþ μ− branching fraction, we
averaged the results from LHCb [52] and CDF [53]. For the
B0 → K!0μþ μ− branching fraction, we averaged the results
from LHCb [51], CMS [54], and CDF (bin 1 only, due to
different upper q 2 limit in bin 2) [53]. For AFB and FL, we
additionally included the ATLAS results [55] in the
average. Our binned theoretical results are given in
Table I and are also shown in Fig. 1.
We find that our standard model results for the differ-

ential branching fractions of both B0 → K!0μþ μ− and
B0
s → ϕμþ μ− are about 30% higher than the experimental

data. Note that for B0
s → ϕμþ μ−, a higher-than-observed

differential branching fraction was also found using form
factors from light-cone sum rules [39] (see Fig. 3 of
Ref. [52]) and from a relativistic quark model [56]. In
the high-q 2 region considered here, our results for the
observables FL, S5, P0

5, and AFB are in agreement with
experiment. For the B0 → K!0μþ μ− observables S3, S4, and
P0
4, we see deviations between the LHCb data and our

results in bin 1, in agreement with Refs. [16,18].
To study the possibility of new physics in the Wilson

coefficients C9 and C0
9, we performed a fit of these

two parameters to the experimental data above
q 2 ¼ 14.18 GeV2, keeping all other Wilson coefficients
fixed at their standard model values (and assuming C9,
C0
9 ∈ R). We included the observables dB=dq 2, FL, S3, S4,

S5, AFB for B0 → K!0μþ μ−, and dB=dq 2, FL, S3 for
B0
s → ϕμþ μ−. We fully took into account the correlations

between our theoretical results for different observables and
different bins. The best-fit values are

CNP
9 ¼ −1.0 $ 0.6; C0

9 ¼ 1.2 $ 1.0; (14)

and the likelihood function is plotted in Fig. 2. The dashed
curves in Fig. 1 show the observables evaluated at the best-
fit values. To investigate how much the uncertainties in
Eq. (14) are influenced by the theoretical and experimental
uncertainties, we performed new fits where we artificially
eliminated or reduced different sources of uncertainty. In
particular, setting all form factor uncertainties to zero
results in CNP

9 ¼ −0.9 $ 0.4, C0
9 ¼ 0.7 $ 0.5, and raises

the statistical significance for nonzero (CNP
9 , C0

9) from 2σ to

3σ. Reducing instead the experimental uncertainties can
have a more dramatic effect, because some of the angular
observables already have very small theory uncertainties
compared to the current experimental uncertainties.
Our result (14) is in remarkable agreement with the result

(8) of the fit performed in Ref. [16], which did not include
the B0

s → ϕμþ μ− data. Equation (14) is also consistent with
the value CNP

9 ∼ −1.5 obtained in Ref. [15], and with the
very recent Bayesian analysis of Ref. [22]. As expected
[16,18], the new-physics scenario (14) does not remove the
tension seen in bin 1 for S4=P0

4. Nevertheless, the fit (14)
significantly improves the overall agreement with the data,
reducing the total χ2 by 5.7 and giving χ2=d:o:f: ¼ 0.96.
We also performed a fit of the experimental data for all
observables in bin 2 only, which gives

TABLE I. Binned theoretical results in the standard model, for
the two q 2 ranges specified in the header of the table (in GeV2).
The uncertainties given here are the total uncertainties, as
explained in the main text.

Observable [14.18, 16.00] [16.00, 19.00]

B0 → K!0μþ μ−

hdB=dq 2i ð10−7 GeV−2Þ 0.77(11) 0.569(74)
hFLi 0.352(49) 0.329(35)
hS3i −0.163ð31Þ −0.233ð20Þ
hS4i 0.292(12) 0.3051(84)
hP0

4i 0.613(18) 0.6506(84)
hS5i −0.333ð32Þ −0.253ð20Þ
hP0

5i −0.700ð61Þ −0.539ð38Þ
hAFBi 0.414(38) 0.350(25)
B0
s → ϕμþ μ−

hdB=dq 2i ð10−7 GeV−2Þ 0.775(94) 0.517(60)
hFLi 0.398(26) 0.365(21)
hS3i −0.166ð16Þ −0.233ð12Þ
hS4i 0.3039(51) 0.3164(38)
hP0

4i 0.6223(91) 0.6582(46)

FIG. 2 (color online). The likelihood function of a fit to the
B0 → K!0μþ μ− and B0

s → ϕμþ μ− experimental data above
q 2 ¼ 14.18 GeV2, with fit parameters CNP

9 and C0
9. The contours

correspond to Δχ2 ¼ 2.30, 6.18, 11.83.
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and the nonlocal hadronic matrix element,

T μ ¼
−16iπ2

q2
X

i¼1…6;8

Ci

Z
d4xeiq·xhK̄"jTOið0ÞjμðxÞjB̄i:

(12)

In Eq. (12), jμðxÞ denotes the quark electromagnetic
current. Near q2 ¼ m2

J=ψð1SÞ; m
2
ψð2SÞ, the contributions from

O1 and O2 in T μ are resonantly enhanced, preventing
reliable theoretical calculations in these regions. At high q2

(∼m2
b), T μ can be expanded in an operator product

expansion (OPE), with the result [42],

T μ ¼ −T7 ðq2Þ
2mb

q2
qνhK̄"js̄iσμνPRbjB̄i

þ T9 ðq2ÞhK̄"js̄γμPLbjB̄i þ
1

2q2
X5

i¼1

BihK̄"jOð−1Þ
iμ jB̄i

þ OðΛ2=m2
b;m

4
c=q4Þ: (13)

(See also Ref. [43] for an alternative version of the OPE.)
In Eq. (13), the Oð−1Þ

iμ are dimension-four operators
containing a derivative, and T7 ;9 ðq2Þ ¼ Ceff

7 ;9 ðq2Þ − C7 ;9
with Ceff

7 ;9 ðq2Þ given by Eqs. (3.9) and (3.10) of Ref. [4].
The matrix elements hK̄"js̄ΓbjB̄i (and analogously for

B̄s → ϕ) in Eqs. (10), (11), and (13) can be written in terms
of the seven form factors V, A0, A1, A12, T1, T2, and T23

[23]. We describe the dependence of the form factors
on q2 using the simplified series expansion [44]. The
corresponding parameters were obtained by fitting the
lattice QCD data, and are given in Tables VII– XI of

Ref. [23]. The matrix elements of the dimension-four
operators in Eq. (13) have not yet been calculated
in lattice QCD, and we will neglect this term. This
introduces a small systematic uncertainty of order
αsΛ=mb ∼ 2% [42].
We take the standard model values of the Wilson

coefficients C1;2;…;10, calculated at next-to-next-to-leading-
logarithmic order, from Ref. [2]. Following the same
reference, we set αsðmbÞ ¼ 0.214, mcðmcÞ ¼ 1.3 GeV,
and mbðmbÞ ¼ 4.2 GeV. We evaluate the electromagnetic
coupling at μ ¼ mb, corresponding to α ¼ 1=133, which
minimizes higher-order electroweak corrections [45]. We
take the hadron masses from the Particle Data Group [46]
and use the mean life times τB0 ¼ 1.519 ð7 Þ ps and
τB0

s
¼ 1.516ð11Þ ps from Ref. [1]. We take jVtbV"

tsj ¼
0.040 88ð57 Þ from the Summer 2013 standard model fit
of Ref. [47].
While the decay B̄0 → K̄"0ð→ K−πþ Þμþ μ− is self-

tagging, the final state of B̄0
s → ϕð→ K−Kþ Þlþ l− does

not determine whether it resulted from the decay of a B̄0
s or

a B0
s meson. Therefore, we calculate the time-integrated

untagged average over the B̄0
s and B0

s decay distributions,
including the effects of B̄0

s-B0
s mixing as explained in

Ref. [48]. We use the width difference ΔΓs ¼
0.081ð11Þ ps−1 [1].
Our results for the differential branching fractions

dB=dq2 ¼ τB0
ðsÞ
dΓ=dq2 and the angular observables FL,

S3, S4, P0
4, S5, P0

5, AFB, where FL ¼ −Sc2 and
AFB ¼ ð−3=8Þð2Ss6 þ Sc6Þ, are shown in Fig. 1 (the observ-
ables S7 ;8;9 as well as the CP asymmetries AðaÞ

i are expected
to be close to zero in the standard model). The shaded
bands in Fig. 1 indicate the total theoretical uncertainty,

FIG. 1 (color online). Observables for the decays B0 → K"0μþ μ− (upper two rows) and B0
s → ϕμþ μ− (bottom row: untagged averages

over the B̄0
s and B0

s distributions). The solid curves show our theoretical results in the standard model; the shaded areas give the
corresponding total uncertainties (with and without binning). The dashed curves correspond to the new-physics fit result
C9 ¼ CSM

9 − 1.0, C0
9 ¼ 1.2 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of results

from the CDF, LHCb, CMS, and ATLAS experiments [14,51–53,55] (note that SðLHCbÞ4 ¼ −S4 and P0ðLHCbÞ
4 ¼ −P0

4).

PRL 112, 212003 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014
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https://arxiv.org/abs/1310.3722
https://arxiv.org/abs/1310.3887
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UKQCD consortium
• 24 faculty at 8 UK institutions 

• Membership/Leadership in several 
international collaborations (e.g. 
HPQCD, RBC-UKQCD, HadSpec, 
QCDSF, FastSum) 

• Broad range of physics: quark 
flavour, hadron spectrum, hot/
dense QCD; BSM theories of 
EWSB, dark matter 

• Widespread impact: LHC, BES-III, 
Belle, JLab, J-PARC, FAIR, RHIC, 
NA62
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DiRAC 2
• 2011: £15M BIS investment in national distributed HPC 

facility for particle & nuclear physics, cosmology, & 
theoretical astrophysics. Recurrent costs funded by STFC 

• 2012: 5 systems deployed: 
• Extreme scaling:1.3 Pflop/s Blue Gene/Q (Edinburgh) 
• Data Analytic/Data Centric/Complexity: 3 tightly-

coupled clusters with various levels of interconnectivity, 
memory, and fast I/O (Cambridge, Durham, Leicester) 

• Shared Memory System (SMP) (Cambridge) 

• Service started 1 December 2012

17



DiRAC 2 outputs
• 106 lattice publications, with 1977 citations (as of 

20/7/2017) 

• 765 publications in a broad scientific range (PPAN) — 
35,365 citations (as of 20/7/2017) 

• Gravitational waves, cosmology, galaxy & planet formation, 
exoplanets, MHD, particle pheno, nuclear physics 

• Valuable resource for PDRA’s & PhD students 

• Scientific results, training in high performance computing

18



DiRAC 3
• Continued success requires continued investment 
• Seek approx £25M capital investment to upgrade 

DiRAC-2 x10

19

DiRAC&3((2016/17(–(TBC)(
Extreme 
Scaling 

Data 
Intensive 

Memory 
Intensive 

Data 
Management 

Internet 
Analytics 

Many-Core 
Coding 

Data Analytics 
Programming 

Fine Tuning Parallel Management 
Multi-threading 

Disaster 
Recovery 

Data Handling 
Archiving 

Tightly(coupled(
compute(&(storage:(
confronta7on(of(
complex(simula7ons(
with(large(data(sets!!

Maximal(
computa7onal(
effort(applied(

to(a(problem(of(
fixed(size(

Larger(memory(footprint(per(node:(problem(
size(grows(with(increasing(machine(power((

• Running costs for staff 
and electricity 

• Improve exploitation of 
research and HPC 
training impact with PDRA 
and PhD support (Big 
Data CDTs) 

• Part of RCUK’s 
e‑Infrastructure roadmap

http://www.rcuk.ac.uk/research/xrcprogrammes/OtherProgs/eInfrastructure/


DiRAC 2
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DiRAC 3

2011/12

2018/19

2016/17 DiRAC 2.5
2017 DiRAC 2.5x

Stop-gap funding:



DiRAC 2.5
• Extreme Scaling 2.5: 1.3 Pflop/s Blue Gene/Q 

• Data Analytic 2.5: Share of Peta5 system + continued 
access to Sandybridge system 
• Shared EPSRC/DiRAC/Cambridge: 25K Skylake cores + 1.0 Pflop/s GPU + 

0.5 Pflop/s KNL service 

• Data Centric 2.5: Over 14K cores, 128 GB RAM/node 

• Complexity 2.5: 4.7K large-job cores + 3K small-job 
cores 

• SMP: 14.8TB, 1.8K core shared memory service

21

After £1.67M capital injection



DiRAC 2.5x
• Planned investment 

• Extreme scaling: 1024-node, 2.5 Pflop/s system 

• Memory intensive: 144 nodes, 4.6K cores, 110 TB RAM 

• Data analytic: 128 nodes, 4K cores, 256GB/node; hierarchy of fat 
nodes (1-6 TB); NVMe storage for data intensive workflows 

• Additional storage at all DiRAC sites 

• Procurement procedure: November 2017 

• Target for hardware availability: April 2018
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June 2017: £9M capital funding (BEIS), lifeline to DiRAC3: 



DiRAC & LQCD

• Capital expenditure has come directly from BIS/BEIS, running 
costs through STFC 

• DiRAC has allowed the UK to be a major contributor to world-wide 
Lattice QCD (and BSM) efforts 

• High precision theory needed to make the most of high precision 
experiment
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0.036 0.038 0.040 0.042 0.044 0.046 0.048

|Vcb|

B → D
FNAL/MILC, 2015
B → D
HPQCD, 2015

B → D*
FNAL/MILC, 2014

Inclusive
Alberti et al., 2015

combined fit
FLAG, 2016
(incl. new expt data)

(before 2/2017)
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TABLE VI. Error budget (in percent) for f+ and f0 at w = 1.16, which is the largest recoil value
used in our momentum extrapolation to the full kinematic range and determination of |Vcb| (see
Sec. V). The first row includes the combined error from statistics, matching, and the error from
truncating the chiral expansion resulting from the chiral-continuum fit: errors in parentheses are
approximate sub-parts estimated as described in the text. The total error is obtained by adding the
individual errors in quadrature. Not explicitly shown because they are negligible are finite-volume
e↵ects, isospin-breaking e↵ects, and light-quark mass tuning.

Source f+(%) f0(%)

Statistics+matching+�PT cont. extrap. 1.2 1.1

(Statistics) (0.7) (0.7)

(Matching) (0.7) (0.7)

(�PT/cont. extrap.) (0.6) (0.5)

Heavy-quark discretization 0.4 0.4

Lattice scale r1 0.2 0.2

Total error 1.2 1.1

f0 to be modest. The errors from the chiral-continuum fit are under good control for the
range of simulated lattice recoil values, but grow rapidly for w & 1.16 where we do not have
data.

We add the remaining systematic uncertainties a posteriori to the chiral-continuum fit
error. We estimate the individual contributions to the form-factor error budget in the follow-
ing subsections, discussing each source in a separate subsection for clarity. In practice, only
the heavy-quark discretization errors (Sec. IVD) and lattice-scale uncertainty (Sec. IVE)
turn out to be significant.

We assume that systematic uncertainties from heavy-quark discretization e↵ects and
the lattice-scale uncertainty are uncorrelated, and therefore add them in quadrature. We
then propagate them to f+ and f0 according to the linear transformation Eqs. (2.5) and
(2.6), which depends on the recoil w, taking them to be 100% correlated between w values
and between h+ and h�. Both the lattice-scale and heavy-quark discretization errors are
substantially smaller than the chiral-continuum fit error, and increase only slowly with w.

B. Matching

The ⇢ factors in Eq. (2.11) enter in the renormalization of the components of the transition
vector current V µ

cb. As explained in Sec. III E these factors are estimated in one-loop lattice
perturbation theory to the extent that such calculations are available. As discussed near the
end of Sec. III F, we build the uncertainty estimates of Eqs. (B31), (B32) and (B37) into
the chiral-continuum fit via Eq. (3.17).

A noteworthy feature of Table VI is the size of the matching error after the chiral-
continuum fit. Had we omitted the errors in Eqs. (B31), (B32), and (B37) from the fitting
function, we would have to add them a posteriori, as we did for B ! D⇤ at zero recoil [5].
Following the procedure used in Ref. [5], we would assign errors of 1.4% and 1.1% for f+
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the discussion below hinges principally on our calculation
of f0ðq2Þ near this point, the validated f0ð0Þ ¼ fþ ð0Þ, and
a smooth connection between the two limits.

We calculate the standard-model B ! D‘! partial de-
cay rates into the three generations of leptons using these
form factors and Eqs. (1) and (2) with GS ¼ GT ¼ 0,
GV ¼ GFV

%
cb. The resulting distributions are plotted in

Fig. 2. To illustrate the role of the scalar form factor
f0ðq2Þ, we also show the rates with only the contributions
from fþ ðq2Þ. Because of the significant helicity suppres-
sion, the differential decay rates into light leptons are well-
approximated by a single contribution from the form factor
fþ ðq2Þ. For B ! D"!, however, the contribution from the
scalar form factor f0ðq2Þ comprises half of the standard-
model rate.

Given the lattice-QCD determinations of fþ ðq2Þ and
f0ðq2Þ, we can obtain the standard-model values for RðDÞ
and PLðDÞ. These are the primary results of this Letter, and
we now discuss the sources of systematic uncertainty.
In Ref. [15], many statistical and several systematic
errors cancelled approximately or exactly in the ratio

fBs!Ds‘!
0 =fB!D‘!

0 studied there. Some of these do not can-
cel (as well) in RðDÞ and PLðDÞ, however, because they
affect fþ ðq2Þ and f0ðq2Þ differently.

Table I shows the error budgets for RðDÞ and PLðDÞ. The
statistical error in RðDÞ is significant (3:7%) due to the
different phase-space integrations in the numerator and
denominator, whereas for PLðDÞ the correlated statistical
fluctuations largely cancel. For the same reason, the errors
in RðDÞ arising from the extrapolation to the physical light-
quark masses and the continuum limit (1:4%) and to the
full q2 range (1:5%) are much larger than for PLðDÞ. We
estimate the error from the chiral-continuum extrapolation

by comparing the results for fits with and without next-to-
next-to-leading-order analytic terms in the chiral expan-
sion. We estimate the error from the z extrapolation by
varying the range of synthetic data used in the z fit,
including an additional pole in the fit function and includ-
ing higher powers of z. The specific chiral and z-fit varia-
tions considered are enumerated in Table VI of Ref. [15]
and discussed in detail in the surrounding text. The remain-
ing sources of uncertainty in Table I do not contribute
significantly to the quantities studied in Ref. [15], so we
describe them in greater detail below.
We determine the bare heavy-quark masses in our

simulations by tuning the parameters #b and #c in the
heavy-quark action such that the kinetic masses of the
pseudoscalar Bs and Ds mesons match the experimentally
measured values [20]. In practice, it is easier to work with
the form factors h& ðwÞ on the lattice, which are linear
combinations of fþ ;0ðq2Þ [15]. We study how the form
factors h& ðwÞ depend on #b;c by recomputing the form
factors on some ensembles at values of #b;c slightly above
and below the default ones and extracting the slopes with
respect to #b;c. We use these slopes to correct our results
for RðDÞ and PLðDÞ slightly from the simulated # values to
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FIG. 2 (color online). Differential decay rates in the standard
model for B ! De!, B ! D$!, and B ! D"! (solid lines, as
labeled). The black dash-dotted curves show the rates calculated
with f0ðq2Þ ¼ 0.
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FIG. 1 (color online). The form factors fþ [upper solid (red)
line] and f0 [lower solid (blue) line] from lattice QCD. The
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of the numerical lattice data over the full kinematic range using
the z parametrization. For comparison, the experimental mea-
surement from BABAR [27] is shown as solid filled circles (using
jVcbj ¼ 41:4 ' 10( 3 [17,27]).

TABLE I. Error budgets for the branching-fraction and
longitudinal-polarization ratios discussed in the text. Errors are
given as percentages.

Source RðDÞ PLðDÞ
Monte Carlo statistics 3.7 1.2
Chiral-continuum extrapolation 1.4 0.1
z expansion 1.5 0.1
Heavy-quark-mass (#) tuning 0.7 0.1
Heavy-quark discretization 0.2 0.3
Current %Vi

cb
=%V0

cb
0.4 0.7

Total 4:3% 1:5%

PRL 109, 071802 (2012) P HY S I CA L R EV I EW LE T T E R S
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FIG. 13. Form factors using both lattice and BaBar [24]
inputs, together with the experimental data points.

TABLE V. Error budget table for |Vcb|. The first three rows
are from experiments, and the rest are from lattice simula-
tions.

Type Partial errors [%]

experimental statistics 1.55

experimental systematic 3.3

meson masses 0.01

lattice statistics 1.22

chiral extrapolation 1.14

discretization 2.59

kinematic 0.96

matching 2.11

electro-weak 0.48

finite size e↵ect 0.1

total 5.34

|Vcb| has been reported from multiple lattice and non-
lattice calculations. We compare the di↵erent determi-
nations in Fig. 14. Our result agrees with other exclusive
calculations, particularly with the most accurate result
from B ! D⇤l⌫, but it is also compatible within errors
with the inclusive determination. Since the discretization
error is one of the dominant errors in our calculation,
lattice errors can be reduced in the future by working on
more ensembles with finer lattice spacings.

VII. THE R(D) RATIO

The experimental data used in the previous section
to extract |Vcb| were for semileptonic decays with light
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|Vcb|

this work+BaBar 2010
Fermilab/MILC (exclusive B to D)
Fermilab/MILC (exclusive B to D*)
Inclusive (PRL 114, 061802)

FIG. 14. |Vcb| comparisons between inclusive and exclusive
determinations.

leptons in the final state. BaBar has also studied decays
involving the much heavier ⌧ lepton, B ! D⌧⌫⌧ , and
measured the ratio,

R(D) =
B(B ! D⌧⌫⌧ )

B(B ! Dl⌫)
, (46)

where l is either an electron or a muon. They find

R(D)|exp. = 0.440(58)(42), (47)

where the first error is the statistical and the second is
the systematic error [26].

Here we present a Standard Model prediction for R(D)
based on our new form factors. Fig. 15 compares di↵er-
ential branching fractions of Eq. (44) for B ! D⌧⌫⌧ and
for B ! Dl⌫. Although only f+(q2) contributes to the
l⌫ case, both f+(q2) and f0(q2) are involved in the ⌧⌫⌧
branching fraction. Integrating over q2 we obtain,

R(D)|SM = 0.300(8). (48)

Table VI shows a detailed error budget for R(D). Fig. 16
gives a comparison plot for di↵erent determinations of
R(D). All Standard Model based calculations are in good
agreement with each other. The di↵erence between our
result and experiment is at the 2� level. We note that
we do not use any experimental results to extract R(D).
Our result gives the most accurate pure Standard Model
prediction to date for R(D).

VIII. SUMMARY AND FUTURE PROSPECTS

In this paper we have presented a new lattice QCD
calculation of the B ! Dl⌫ semileptonic decay form fac-
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leptons in the final state. BaBar has also studied decays
involving the much heavier ⌧ lepton, B ! D⌧⌫⌧ , and
measured the ratio,

R(D) =
B(B ! D⌧⌫⌧ )

B(B ! Dl⌫)
, (46)

where l is either an electron or a muon. They find

R(D)|exp. = 0.440(58)(42), (47)

where the first error is the statistical and the second is
the systematic error [26].

Here we present a Standard Model prediction for R(D)
based on our new form factors. Fig. 15 compares di↵er-
ential branching fractions of Eq. (44) for B ! D⌧⌫⌧ and
for B ! Dl⌫. Although only f+(q2) contributes to the
l⌫ case, both f+(q2) and f0(q2) are involved in the ⌧⌫⌧
branching fraction. Integrating over q2 we obtain,

R(D)|SM = 0.300(8). (48)

Table VI shows a detailed error budget for R(D). Fig. 16
gives a comparison plot for di↵erent determinations of
R(D). All Standard Model based calculations are in good
agreement with each other. The di↵erence between our
result and experiment is at the 2� level. We note that
we do not use any experimental results to extract R(D).
Our result gives the most accurate pure Standard Model
prediction to date for R(D).

VIII. SUMMARY AND FUTURE PROSPECTS

In this paper we have presented a new lattice QCD
calculation of the B ! Dl⌫ semileptonic decay form fac-
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Na et al. (HPQCD), arXiv:1505.03925
Bailey et al. (FNAL/MILC), arXiv:1503.07237
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but with only the continuum curve displayed. The extrapo-
lated value for the form factor is also shown, including the
full systematic error for our final result.

VII. SYSTEMATIC ERRORS

In this section, we examine the uncertainties in our
calculation in detail. Statistical uncertainties are computed

with a single-elimination jackknife and fits use the full
covariance matrix to determine χ2. We devote a subsection
to each of the sources of uncertainty: fitting and excited
states, the heavy-quark mass and lattice-scale dependence,
the chiral extrapolation of the light spectator-quark mass
(in particular the D!-D-π coupling), discretization errors,
perturbation theory, and isospin effects.

A. Fitting and excited states

We determine plateau fits to the double ratio, Eq. (2.12).
The fits are done under a single-elimination jackknife, after
blocking the data by 4 on all ensembles. The χ2 is defined
using the full covariance matrix. Statistical errors are
determined in fits that include the full correlation matrix,
whichwas remade for each jackknife fit. In order to correctly
propagate the correlated statistical errors to the chiral/
continuum extrapolation fits, the jackknife data sets on
different ensembles are combined into a larger block-
diagonal jackknife data set. The block size of 4 is chosen
only to keep the combined data set to a manageable size for
the chiral and continuum extrapolation fits. We find that the
statistical errors do not grow with blocking, and that there-
fore the autocorrelation errors are negligible even without
blocking. This was not true in our previous calculation [7],
although that calculation used many of the same ensembles.
This is because in the current calculation,wemove the source
origin around the lattice randomly, whereas in the previous
calculation the source origin was fixed.
With several hundred configurations on each ensemble,

and over 2000 configurations on some ensembles, we do
not have difficulty resolving the full covariance matrix in
our correlator fits, and we do not need to resort to a
singular value decomposition cut on the eigenvalues of
the covariance matrix. We find that the averaged ratio
data [constructed from our correlators using Eq. (3.2)] on
the 0.09 fm lattices are well described by a fit to a
constant over a range of five time slices, and that the fit
range where an acceptable fit is obtained is roughly the
same in physical units across ensembles. The correlated
χ2=d:o:f: ranges from 0.08 to 0.85, with one exception.
On the 0.06 fm, 0.15ms ensemble, the χ2=d:o:f: is 1.71, a
bit higher than one might expect, based on fits to the
same physical time range on other ensembles. Also, the
double ratio RðtÞ appears somewhat asymmetric under
the interchange of source and sink on this ensemble, but
this must be a statistical fluctuation, since RðtÞ is
symmetric by construction. For this ensemble, we adopt
the PDG prescription and rescale the statistical error by
the square root of the χ2=d:o:f: Time ranges for fits, their
p values, and the raw values for hA1

ð1Þ are given in
Table IV. We take the good quality of our fits as evidence
that systematic errors due to excited states are small
compared to other errors, and aside from the inflation of
the error on one of our data points, we assign no further
error to fitting and excited states.
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FIG. 7 (color online). The full QCD points for hA1
ð1Þ versusm2

π
at five lattice spacings are shown in comparison to the continuum
curve. The cross is the extrapolated value, the solid line is the
statistical error, and the dashed line is the total systematic error
added to the statistical error in quadrature.
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lattice-spacing dependence is, at most, as large as the
statistical error. The HQET theory of heavy-quark discre-
tization effects anticipates this small size but does not,
however, predict a simple power series for the a depend-
ence, making a naive extrapolation problematic. In
Appendix B, we present a detailed analysis for the expected
a dependence. In short, we expect the overall size of heavy-
quark discretization errors to be of order aΛ̄2=mc and a2Λ̄2,
but we must choose a value of Λ̄. We compare the observed
variation with a2 of the data in Fig. 8 with the theory
[53,54]. We find that if we choose Λ̄ ¼ 450 MeV, then the
theoretical estimates are compatible with the data’s a
dependence. In this way, we deduce that the discretization
error on the superfine lattice (a ≈ 0.060 fm) is 1%, leading
to the row labeled “discretization errors” in Table X.

F. Perturbation theory

The calculation of ρAj defined in Eq. (2.10) is carried out
at one-loop order in perturbation theory, as discussed in
Sec. IV. Because ρAj is defined from a ratio of current
renormalization factors, its deviation from unity is expected
to be small by construction. Indeed, the one-loop correc-
tions to ρAj shown in Table V confirm our expectation.
They range from 0.05% to 0.6%. In order to estimate the
error due to the omitted higher-order corrections, we
consider the variation of the one-loop corrections to ρAj

with the quark masses used in this calculation. We also
consider the related renormalization factor ρV4, defined
from the charm-bottom vector current V4

cb analogously to
the definition of ρAj in Eq. (2.10). We find ρ½1#≤ 0.1 for
both currents. We then estimate the uncertainty as ρ½1#max · α2s
with ρ½1#max ¼ 0.1 and αs ¼ αVð2=aÞ evaluated at
a ≈ 0.045 fm, which yields a systematic error of 0.4%.

G. Isospin effects

The experimental measurements of the branching frac-
tion for B → D&lν assume isospin symmetry, and different
isospin channels are averaged together [76]. We estimate
the size of the effect of isospin corrections based on the

chiral extrapolation. One could explicitly include the
difference between u- and d-quark masses in the chiral
effective theory, though this has not been worked out
through one loop for this process, to the best of our
knowledge. As a simple estimate of the size of isospin
effects we vary the end point of our chiral extrapolation
between the physical πþ and the π0 mass. We use the πþ

mass extrapolation for our central value, but shifting to the
π0 changes the result by 0.1%. Changing the charm-mass
splitting between the D&0 and the D&þ is a much smaller
effect. Thus, we quote an error of 0.1% due to isospin
effects.

VIII. ELECTROWEAK EFFECTS

In this section, we discuss the electroweak and electro-
magnetic effects in the semileptonic rate, Eq. (1.3). They do
not enter the lattice-QCD calculation but are needed, in
addition to the hadronic form factor F ð1Þ ¼ hA1

ð1Þ, to
obtain jVcbj. The factor ηEW (written as ηem in Ref. [1])
takes the form [10]

ηEW ¼ 1þ α
π

!
ln
MW

μ
þ tan2θW

M2
W

M2
Z −M2

W
ln

MZ

MW

"
; ð8:1Þ

where the weak mixing angle is specified via
cos θW ¼ g2=ðg22 þ g21Þ1=2; g2 and g1 are the gauge cou-
plings of SUð2Þ × Uð1Þ. The first (second) term stems
from W-photon (W-Z) box diagrams plus associated parts
from vertex and wave-function renormalization. This form
assumes that GF in Eq. (1.3) is defined via the muon
lifetime, which is the case for GF in Ref. [1]. In the SM,
MW ¼ MZ cos θW , and the bracket simplifies to lnðMZ=μÞ.
With this assumption, taking the factorization scale
μ ¼ MB( , and varying μ by a factor of 2 to estimate the
error, one finds

ηEW;SM ¼ 1.00662ð16Þ: ð8:2Þ

To reiterate, it is theoretically cleaner not to include this
factor in F ðwÞ. This way makes it more straightforward to
study or remove the μ dependence in future work.
In the experiments [76], the charged-lepton energy

spectrum is corrected for bremsstrahlung with the
PHOTOS [77] generator. For charged B decay, this package
has been shown [78] to reproduce the exact formula [79].
For neutral B decay, the chargedD− and lþ in the final state
attract each other, which is reflected in a slightly different
formula for the radiation [11]. Reference [12] recom-
mended treating this effect with a Coulomb correction, 1þ
απ=2 ¼ 1.01146 on the amplitude, which is larger than the
electroweak correction and similar in size to the uncer-
tainties from experiment and from QCD. Note, however,
that a detailed study of radiative corrections in K → πlν
finds that QCD-scale effects reduce the Coulomb effects,
such that the total is closer to 1% than 2% [80]. Already

TABLE X. Final error budget for hA1
ð1Þ where each error is

discussed in the text. Systematic errors are added in quadrature
and combined in quadrature with the statistical error to obtain the
total error.

Uncertainty hA1
ð1Þ

Statistics 0.4%
Scale (r1) error 0.1%
χPT fits 0.5%
gD&Dπ 0.3%
Discretization errors 1.0%
Perturbation theory 0.4%
Isospin 0.1%
Total 1.4%
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hD⇤(p0, ✏)|q̄�µ�5Q|B(p)i = 2MD⇤A0(q
2)
✏⇤ · q
q2

qµ + (MB +MD⇤)A1(q
2)
h
✏⇤µ � ✏⇤ · q

q2
qµ

i

�A2(q
2)

✏⇤ · q
MB +MD⇤

h
pµ + p0µ � M2

B �M2
D⇤

q2
qµ

i
.



B ➝ D* — lattice spacing

31

Continuum- 
physical mass 

curve

8

FIG. 2: Fit to our data using staggered chiral perturbation
theory. The blue line and grey band are the continuum chiral
perturbation theory result and error extrapolated from our
lattice data. The error band includes systematic errors com-
ing from matching uncertainties and hence has a much larger
error than any of the data points, which are only shown with
their statistical error.

di, and fi are given prior values of 0(0.5). We neglect
the e↵ects of the very small mistuning of the light quark
masses from their physical value which we expect to be
small.

Finite volume corrections to the staggered chiral per-
turbation theory are given in [60]. Evaluating these ex-
pressions on our lattices, we have found that finite vol-
ume e↵ects are at least an order of magnitude smaller
than the leading O(↵2

s) error on the unphysical lattices.
On sets 3, 6 and 8 the finite volume e↵ects are on the
order of half a percent and are significant at the order
to which we work. In order to account for these e↵ects
we subtract the correction to hA1

(1) from our data. We
discuss finite volume e↵ects further in Appendix F.

The calculation on each ensemble of the form factor
for Bs ! D⇤

s decay is equivalent to the B ! D⇤ calcu-
lation, with the light quark propagator replaced with a
strange quark propagator. The analysis is substantially
more straightforward, both because the data is less noisy
and because no chiral extrapolation is required. Before
fitting the lattice data, we include a term to account for
the absence of O(⇤2

QCD
/m2

b) and O(↵s⇤QCD/mb) e↵ects,
as in (20), using the same Gaussian variables e4, e5, e6,
e7, e8, and e9.

For the continuum-chiral fit to the hs
A1

(1) we take the
functional form to be the following, where �sBa Bs has
the same form and priors as the term included for the
B ! D⇤:

hs
A1

(1)
��
fit

= (1 + Bs)�sBa

+ �1↵
2

s

h
1 +

�5
2

(amb � 2) +
�6
4

(amb � 2)2
i
V (0) (27)

FIG. 3: Plot showing the a
2 dependence of our data extracted

from the fit. The blue line with grey error band shows the
physical result for the form factor determined by the fit de-
scribed in the text.

FIG. 4: Lattice spacing dependence of our results for the
Bs ! D

⇤
s zero recoil form factor. The blue line with grey error

band shows the physical result for the form factor determined
by the fit described in the text.

where �1, �5 and �6 are the same as in (21) because
these terms represent the same higher order matching
corrections. We run the Bs ! D⇤

s fit simultaneously
with the B ! D⇤ fit.

The NRQCD and HISQ systematics are the same as
before, and we expect negligible isospin breaking and fi-
nite volume e↵ects. In Figure 2 we show the M2

⇡ depen-
dence of our B ! D⇤ data and the extrapolated contin-
uum chiral form.

We present results for the hA1
(1) and hs

A1
(1) fit param-

eters B, �i, i, ci, di, fi in Table VIII. Plots showing
the a2 dependence of our B ! D⇤ and Bs ! D⇤

s data

9

TABLE VIII: Results for parameters in the chiral-continuum fits, Eq. (21) and (27). Higher order terms retain their prior
values and are not shown while 

B
2 = �0.17(25) and 

B
2 = �0.05(42) for hA1

(1) and h
s
A1
(1) respectively.

c1 c2 d1 d2 f1 f2

hA1
(1) �

B
a0 �0.15(12) 0.27(29) 0.24(40) 0.0(5) 0.24(40) 0.0(5)

h
s
A1
(1) �

B
a0 �0.03(22) 0.05(35) 0.0(5) 0.0(5) 0.0(5) 0.0(5)

B C g �1 �5 �6

hA1
(1) �0.091(27) �0.02(24) 0.521(78) �0.14(44) 0(1) -0.15(97)

h
s
A1
(1) �0.117(31) – – �0.14(44) 0(1) -0.15(97)

TABLE IX: Partial errors (in percentages) for h
(s)
A1

(1). A full
accounting of the breakdown of systematic errors is made dif-
ficult by the fact that smaller priors not well constrained by
the data are mixed in a correlated way by the fitter; these
are reflected in the total systematic uncertainty. Note that
the uncertainty from missing ↵

2
s terms in the matching for

hA1
(1) and h

s
A1
(1) is constrained somewhat by the fit; a naive

estimate would give 3.5% on the fine lattices.

Uncertainty hA1
(1) h

s
A1
(1) hA1

(1)/h
s
A1
(1)

↵
2
s 2.1 2.5 0.4

↵s⇤QCD/mb 0.9 0.9 0.0

(⇤QCD/mb)
2 0.8 0.8 0.0

a
2 0.7 1.4 1.4

gD⇤D⇡ 0.2 0.03 0.2

Total systematic 2.7 3.2 1.7

Data 1.1 1.4 1.4

Total 2.9 3.5 2.2

are shown in Figures 3 and 4 respectively, together with
the result of our fit. The O(a4) and O(a6) parameters
default to their prior values, while the O(a2) parameters
are consistent with zero. We tried various modifications
to our fit, the results of which we present in Appendix F.
Table IX presents a summary and combination of the
uncertainties in our results for hA1

(1) and hs
A1

(1).

C. Isospin breaking e↵ects

The e↵ects of electromagnetic interactions and mu 6=
md on hA1

(1) are negligible compared to the dominant
uncertainties quoted in Table IX. We find only a variation
of 0.25% in the chiral-continuum fits to hA1

(1) whether
the ⇡0 or ⇡+ mass is used as the input value for the phys-
ical limit. Electroweak and Coulomb e↵ects in the decay
rate (1) are presently accounted for at leading order by
a single multiplicative factor ⌘̄EW to be discussed below
in Sec. VII. As lattice QCD uncertainties are reduced in
the future, it will be desirable to more directly calculate
the e↵ects of electromagnetism in a lattice QCD+QED

calculation, where mu 6= md can also be implemented.

VI. RESULTS AND DISCUSSION

We have calculated the zero recoil form factor for
B ! D⇤`⌫ decay using the most physically realistic gluon
field configurations currently available along with quark
discretizations that are highly improved. Our final result
for the form factor, including all sources of uncertainty,
is

F
B!D⇤

(1) = hA1
(1) = 0.895(10)stat(24)sys . (28)

It is clear from this treatment that the dominant source
of uncertainty is the O(↵2

s) uncertainty coming from
the perturbative matching calculation. In principle this
could be reduced by a two-loop matching calculation;
however, such calculations in lattice NRQCD have not
been done before. It is worth noting that for our calcula-
tion this uncertainty is somewhat constrained by the fit,
as is reflected in Table IX. It has also been suggested [62]
that it could be estimated using heavy-HISQ b quarks
on ‘ultrafine’ lattices with a = 0.045 fm and mba < 1.
There we can use the nonperturbative PCAC relation and
the absolute normalization of the pseudoscalar current
to normalise J (0), using (mb + mc)P̂ = Z@µÂµ to find
the matching coe�cient Z and then comparing matrix
elements of this normalized current to the result using
perturbation theory.

Within errors, our result agrees with the result from
the Fermilab Lattice and MILC Collaborations [18],
hA1

(1) = 0.906(4)(12). The higher precision achieved
in this work is due to the use of the same lattice dis-
cretization for the b and c quarks. This enabled them to
avoid the larger current-matching uncertainties present
in our NRQCD-b, HISQ-c work. Nevertheless, the value
of providing a completely independent lattice QCD result
using di↵erent formalisms is self-evident.

After combining the statistical and systematic errors
in quadrature, a weighted average of the two lattice re-
sults yields hA1

(1) = 0.900(11). We use this value in our
discussion in Sec. VII.
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FIG. 2: Fit to our data using staggered chiral perturbation
theory. The blue line and grey band are the continuum chiral
perturbation theory result and error extrapolated from our
lattice data. The error band includes systematic errors com-
ing from matching uncertainties and hence has a much larger
error than any of the data points, which are only shown with
their statistical error.

di, and fi are given prior values of 0(0.5). We neglect
the e↵ects of the very small mistuning of the light quark
masses from their physical value which we expect to be
small.

Finite volume corrections to the staggered chiral per-
turbation theory are given in [60]. Evaluating these ex-
pressions on our lattices, we have found that finite vol-
ume e↵ects are at least an order of magnitude smaller
than the leading O(↵2

s) error on the unphysical lattices.
On sets 3, 6 and 8 the finite volume e↵ects are on the
order of half a percent and are significant at the order
to which we work. In order to account for these e↵ects
we subtract the correction to hA1

(1) from our data. We
discuss finite volume e↵ects further in Appendix F.

The calculation on each ensemble of the form factor
for Bs ! D⇤

s decay is equivalent to the B ! D⇤ calcu-
lation, with the light quark propagator replaced with a
strange quark propagator. The analysis is substantially
more straightforward, both because the data is less noisy
and because no chiral extrapolation is required. Before
fitting the lattice data, we include a term to account for
the absence of O(⇤2

QCD
/m2

b) and O(↵s⇤QCD/mb) e↵ects,
as in (20), using the same Gaussian variables e4, e5, e6,
e7, e8, and e9.

For the continuum-chiral fit to the hs
A1

(1) we take the
functional form to be the following, where �sBa Bs has
the same form and priors as the term included for the
B ! D⇤:

hs
A1

(1)
��
fit

= (1 + Bs)�sBa

+ �1↵
2

s

h
1 +

�5
2

(amb � 2) +
�6
4

(amb � 2)2
i
V (0) (27)

FIG. 3: Plot showing the a
2 dependence of our data extracted

from the fit. The blue line with grey error band shows the
physical result for the form factor determined by the fit de-
scribed in the text.

FIG. 4: Lattice spacing dependence of our results for the
Bs ! D

⇤
s zero recoil form factor. The blue line with grey error

band shows the physical result for the form factor determined
by the fit described in the text.

where �1, �5 and �6 are the same as in (21) because
these terms represent the same higher order matching
corrections. We run the Bs ! D⇤

s fit simultaneously
with the B ! D⇤ fit.

The NRQCD and HISQ systematics are the same as
before, and we expect negligible isospin breaking and fi-
nite volume e↵ects. In Figure 2 we show the M2

⇡ depen-
dence of our B ! D⇤ data and the extrapolated contin-
uum chiral form.

We present results for the hA1
(1) and hs

A1
(1) fit param-

eters B, �i, i, ci, di, fi in Table VIII. Plots showing
the a2 dependence of our B ! D⇤ and Bs ! D⇤

s data
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Our result for the Bs ! D⇤
s zero-recoil form factor is

F
Bs!D⇤

s(1) = hs
A1

(1) = 0.883(12)stat(28)sys . (29)

This is the first lattice QCD calculations of this quan-
tity. We see no significant di↵erence between the result
for B ! D⇤ and Bs ! D⇤

s showing that spectator quark
mass e↵ects are very small. Correlated systematic uncer-
tainties cancel in the ratio, which we find to be

F
B!D⇤

(1)

FBs!D⇤
s(1)

=
hA1

(1)

hs
A1

(1)
= 1.013(14)stat(17)sys . (30)

We find there to be no significant U -spin (d $ s) break-
ing e↵ect at the few percent level.

VII. IMPLICATIONS FOR |Vcb|

Until recently, one would simply combine a world av-
erage of lattice data for hA1

(1) with the latest HFLAV
result for the B̄0

! D⇤+`�⌫ di↵erential branching
fraction extrapolated to zero recoil: ⌘̄EWF(1)|Vcb| =
35.61(11)(44) ⇥ 10�3 [17]. Doing so with the weighted
average of the Fermilab/MILC result and ours yields

|Vcb|HFLAV = (38.9 ± 0.7) ⇥ 10�3 , (31)

where we have used the estimated charge-averaged value
of ⌘̄EW = 1.015(5) [18]. The uncertainty in |Vcb|HFLAV is
due in equal parts to lattice and experimental error.

Recent work analyzing unfolded Belle data [16] has
called into question the accuracy of what has become
the standard method of extrapolating experimental data
to zero recoil [22–27]. In order to understand our new
result for hA1

(1), as well as to prepare for future lattice
calculations and experimental measurements, we carry
out a similar analysis here. We generally agree with con-
clusions already in the literature, but we present a few
of our own suggestions for how one could proceed in the
future.

The method used by experiments to date is due to
Caprini, Lellouch, and Neubert (CLN) [21]. Their para-
matrization of the form factors entering the di↵erential
decay rate and angular observables is an expansion about
zero-recoil, i.e. about w = 1. (See Appendix G for expres-
sions relating experimental observables to form factors.)
In the case of the hA1

(w) form factor it was found that
the kinematic variable z gives a more convergent series.
Given a specific choice of t0, z depends on the t = q2 as

z(t, t0) =

p
t+ � t �

p
t+ � t0

p
t+ � t +

p
t+ � t0

(32)

with t± = (MB ±MD⇤)2. Usually one takes t0 = t�, and
this is the choice assumed throughout this paper.1

1 One can express z(t, t�) as a function of w as

z(w) =

p
w + 1 �

p
2

p
w + 1 +

p
2

.

TABLE X: Fits to the unfolded Belle data using the CLN
parametrization. The first fit does not account for any uncer-
tainties in the r coe�cients (34). The next three include the
r coe�cients as Gaussian priors with widths of 10%, 20% or
100% uncertainties, respectively. The final two fits assign 10%
or 20% uncertainty to the coe�cients in hA1

(w) and allow the
coe�cients of R1(w) and R2(w) to be O(1).

fit I ⇢
2

R1(1) R2(1)

0% 0.0348(12) 1.17(15) 1.386(88) 0.912(76)

10% 0.0349(13) 1.19(16) 1.387(88) 0.914(76)

20% 0.0352(13) 1.24(19) 1.390(88) 0.922(78)

100% 0.0367(16) 1.64(31) 1.397(94) 0.941(96)

h:10%, R:0(1) 0.0359(14) 1.29(17) 1.19(22) 1.05(18)

h:20%, R:0(1) 0.0359(14) 1.31(19) 1.19(22) 1.04(19)

The CLN form factors are given as follows

hA1
(w) = hA1

(1)[1 � 8⇢2z + (rh2r⇢
2 + rh2)z

2

+ (rh3r⇢
2 + rh3)z

3]

R1(w) = R1(1) + r11(w � 1) + r12(w � 1)2

R2(w) = R2(1) + r21(w � 1) + r22(w � 1)2 (33)

with the coe�cients computed to be [21]

rh2r = 53 , rh2 = �15 ,

rh3r = �231 , rh3 = 91 ,

r11 = �0.12 , r12 = 0.05 ,

r21 = 0.11 , r22 = �0.06 . (34)

These numbers are the result of a calculation in HQET,
using QCD sum rules and neglecting contributions of
↵s⇤QCD/mc and (⇤QCD/mc)2, as well as smaller e↵ects.
Until recently e↵ects of neglecting these terms have not
been included in fitting the experimental data.

Ref. [21] claims an accuracy of 2%; however this is
based on comparing an expansions in z against some full
expressions. While this tests the convergence of the ex-
pansions, it does not test the accuracy of numerical fac-
tors computed in truncated HQET. In fact the data do
not require any higher order terms in z or w�1. We found
no e↵ect when including a z4 term or (w � 1)3 terms in
(33) with Gaussian priors allowing the coe�cient rh4 to
be up to O(103) and r13, r23 to be up to O(1).

Nevertheless none of this accounts for higher order
terms in the HQET. We can get some idea of how the
fit is a↵ected by allowing the r coe�cients (34) to be fit
parameters with Gaussian priors, with means equal to
the CLN values but with widths which we vary. Table X
shows the results of fitting to the CLN parametrization.
We present six variations, which we describe below. In
order to infer |Vcb| from the lattice hA1

(1) and the fit to
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FIG. 2: Fit to our data using staggered chiral perturbation
theory. The blue line and grey band are the continuum chiral
perturbation theory result and error extrapolated from our
lattice data. The error band includes systematic errors com-
ing from matching uncertainties and hence has a much larger
error than any of the data points, which are only shown with
their statistical error.

di, and fi are given prior values of 0(0.5). We neglect
the e↵ects of the very small mistuning of the light quark
masses from their physical value which we expect to be
small.

Finite volume corrections to the staggered chiral per-
turbation theory are given in [60]. Evaluating these ex-
pressions on our lattices, we have found that finite vol-
ume e↵ects are at least an order of magnitude smaller
than the leading O(↵2

s) error on the unphysical lattices.
On sets 3, 6 and 8 the finite volume e↵ects are on the
order of half a percent and are significant at the order
to which we work. In order to account for these e↵ects
we subtract the correction to hA1

(1) from our data. We
discuss finite volume e↵ects further in Appendix F.

The calculation on each ensemble of the form factor
for Bs ! D⇤

s decay is equivalent to the B ! D⇤ calcu-
lation, with the light quark propagator replaced with a
strange quark propagator. The analysis is substantially
more straightforward, both because the data is less noisy
and because no chiral extrapolation is required. Before
fitting the lattice data, we include a term to account for
the absence of O(⇤2

QCD
/m2

b) and O(↵s⇤QCD/mb) e↵ects,
as in (20), using the same Gaussian variables e4, e5, e6,
e7, e8, and e9.

For the continuum-chiral fit to the hs
A1

(1) we take the
functional form to be the following, where �sBa Bs has
the same form and priors as the term included for the
B ! D⇤:

hs
A1

(1)
��
fit

= (1 + Bs)�sBa

+ �1↵
2

s

h
1 +

�5
2

(amb � 2) +
�6
4

(amb � 2)2
i
V (0) (27)

FIG. 3: Plot showing the a
2 dependence of our data extracted

from the fit. The blue line with grey error band shows the
physical result for the form factor determined by the fit de-
scribed in the text.

FIG. 4: Lattice spacing dependence of our results for the
Bs ! D

⇤
s zero recoil form factor. The blue line with grey error

band shows the physical result for the form factor determined
by the fit described in the text.

where �1, �5 and �6 are the same as in (21) because
these terms represent the same higher order matching
corrections. We run the Bs ! D⇤

s fit simultaneously
with the B ! D⇤ fit.

The NRQCD and HISQ systematics are the same as
before, and we expect negligible isospin breaking and fi-
nite volume e↵ects. In Figure 2 we show the M2

⇡ depen-
dence of our B ! D⇤ data and the extrapolated contin-
uum chiral form.

We present results for the hA1
(1) and hs

A1
(1) fit param-

eters B, �i, i, ci, di, fi in Table VIII. Plots showing
the a2 dependence of our B ! D⇤ and Bs ! D⇤

s data
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TABLE VIII: Results for parameters in the chiral-continuum fits, Eq. (21) and (27). Higher order terms retain their prior
values and are not shown while 

B
2 = �0.17(25) and 

B
2 = �0.05(42) for hA1

(1) and h
s
A1
(1) respectively.

c1 c2 d1 d2 f1 f2

hA1
(1) �

B
a0 �0.15(12) 0.27(29) 0.24(40) 0.0(5) 0.24(40) 0.0(5)

h
s
A1
(1) �

B
a0 �0.03(22) 0.05(35) 0.0(5) 0.0(5) 0.0(5) 0.0(5)

B C g �1 �5 �6

hA1
(1) �0.091(27) �0.02(24) 0.521(78) �0.14(44) 0(1) -0.15(97)

h
s
A1
(1) �0.117(31) – – �0.14(44) 0(1) -0.15(97)

TABLE IX: Partial errors (in percentages) for h
(s)
A1

(1). A full
accounting of the breakdown of systematic errors is made dif-
ficult by the fact that smaller priors not well constrained by
the data are mixed in a correlated way by the fitter; these
are reflected in the total systematic uncertainty. Note that
the uncertainty from missing ↵

2
s terms in the matching for

hA1
(1) and h

s
A1
(1) is constrained somewhat by the fit; a naive

estimate would give 3.5% on the fine lattices.

Uncertainty hA1
(1) h

s
A1
(1) hA1

(1)/h
s
A1
(1)

↵
2
s 2.1 2.5 0.4

↵s⇤QCD/mb 0.9 0.9 0.0

(⇤QCD/mb)
2 0.8 0.8 0.0

a
2 0.7 1.4 1.4

gD⇤D⇡ 0.2 0.03 0.2

Total systematic 2.7 3.2 1.7

Data 1.1 1.4 1.4

Total 2.9 3.5 2.2

are shown in Figures 3 and 4 respectively, together with
the result of our fit. The O(a4) and O(a6) parameters
default to their prior values, while the O(a2) parameters
are consistent with zero. We tried various modifications
to our fit, the results of which we present in Appendix F.
Table IX presents a summary and combination of the
uncertainties in our results for hA1

(1) and hs
A1

(1).

C. Isospin breaking e↵ects

The e↵ects of electromagnetic interactions and mu 6=
md on hA1

(1) are negligible compared to the dominant
uncertainties quoted in Table IX. We find only a variation
of 0.25% in the chiral-continuum fits to hA1

(1) whether
the ⇡0 or ⇡+ mass is used as the input value for the phys-
ical limit. Electroweak and Coulomb e↵ects in the decay
rate (1) are presently accounted for at leading order by
a single multiplicative factor ⌘̄EW to be discussed below
in Sec. VII. As lattice QCD uncertainties are reduced in
the future, it will be desirable to more directly calculate
the e↵ects of electromagnetism in a lattice QCD+QED

calculation, where mu 6= md can also be implemented.

VI. RESULTS AND DISCUSSION

We have calculated the zero recoil form factor for
B ! D⇤`⌫ decay using the most physically realistic gluon
field configurations currently available along with quark
discretizations that are highly improved. Our final result
for the form factor, including all sources of uncertainty,
is

F
B!D⇤

(1) = hA1
(1) = 0.895(10)stat(24)sys . (28)

It is clear from this treatment that the dominant source
of uncertainty is the O(↵2

s) uncertainty coming from
the perturbative matching calculation. In principle this
could be reduced by a two-loop matching calculation;
however, such calculations in lattice NRQCD have not
been done before. It is worth noting that for our calcula-
tion this uncertainty is somewhat constrained by the fit,
as is reflected in Table IX. It has also been suggested [62]
that it could be estimated using heavy-HISQ b quarks
on ‘ultrafine’ lattices with a = 0.045 fm and mba < 1.
There we can use the nonperturbative PCAC relation and
the absolute normalization of the pseudoscalar current
to normalise J (0), using (mb + mc)P̂ = Z@µÂµ to find
the matching coe�cient Z and then comparing matrix
elements of this normalized current to the result using
perturbation theory.

Within errors, our result agrees with the result from
the Fermilab Lattice and MILC Collaborations [18],
hA1

(1) = 0.906(4)(12). The higher precision achieved
in this work is due to the use of the same lattice dis-
cretization for the b and c quarks. This enabled them to
avoid the larger current-matching uncertainties present
in our NRQCD-b, HISQ-c work. Nevertheless, the value
of providing a completely independent lattice QCD result
using di↵erent formalisms is self-evident.

After combining the statistical and systematic errors
in quadrature, a weighted average of the two lattice re-
sults yields hA1

(1) = 0.900(11). We use this value in our
discussion in Sec. VII.
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Our result for the Bs ! D⇤
s zero-recoil form factor is

F
Bs!D⇤

s(1) = hs
A1

(1) = 0.883(12)stat(28)sys . (29)

This is the first lattice QCD calculations of this quan-
tity. We see no significant di↵erence between the result
for B ! D⇤ and Bs ! D⇤

s showing that spectator quark
mass e↵ects are very small. Correlated systematic uncer-
tainties cancel in the ratio, which we find to be

F
B!D⇤

(1)

FBs!D⇤
s(1)

=
hA1

(1)

hs
A1

(1)
= 1.013(14)stat(17)sys . (30)

We find there to be no significant U -spin (d $ s) break-
ing e↵ect at the few percent level.

VII. IMPLICATIONS FOR |Vcb|

Until recently, one would simply combine a world av-
erage of lattice data for hA1

(1) with the latest HFLAV
result for the B̄0

! D⇤+`�⌫ di↵erential branching
fraction extrapolated to zero recoil: ⌘̄EWF(1)|Vcb| =
35.61(11)(44) ⇥ 10�3 [17]. Doing so with the weighted
average of the Fermilab/MILC result and ours yields

|Vcb|HFLAV = (38.9 ± 0.7) ⇥ 10�3 , (31)

where we have used the estimated charge-averaged value
of ⌘̄EW = 1.015(5) [18]. The uncertainty in |Vcb|HFLAV is
due in equal parts to lattice and experimental error.

Recent work analyzing unfolded Belle data [16] has
called into question the accuracy of what has become
the standard method of extrapolating experimental data
to zero recoil [22–27]. In order to understand our new
result for hA1

(1), as well as to prepare for future lattice
calculations and experimental measurements, we carry
out a similar analysis here. We generally agree with con-
clusions already in the literature, but we present a few
of our own suggestions for how one could proceed in the
future.

The method used by experiments to date is due to
Caprini, Lellouch, and Neubert (CLN) [21]. Their para-
matrization of the form factors entering the di↵erential
decay rate and angular observables is an expansion about
zero-recoil, i.e. about w = 1. (See Appendix G for expres-
sions relating experimental observables to form factors.)
In the case of the hA1

(w) form factor it was found that
the kinematic variable z gives a more convergent series.
Given a specific choice of t0, z depends on the t = q2 as

z(t, t0) =

p
t+ � t �

p
t+ � t0

p
t+ � t +

p
t+ � t0

(32)

with t± = (MB ±MD⇤)2. Usually one takes t0 = t�, and
this is the choice assumed throughout this paper.1

1 One can express z(t, t�) as a function of w as

z(w) =

p
w + 1 �

p
2

p
w + 1 +

p
2

.

TABLE X: Fits to the unfolded Belle data using the CLN
parametrization. The first fit does not account for any uncer-
tainties in the r coe�cients (34). The next three include the
r coe�cients as Gaussian priors with widths of 10%, 20% or
100% uncertainties, respectively. The final two fits assign 10%
or 20% uncertainty to the coe�cients in hA1

(w) and allow the
coe�cients of R1(w) and R2(w) to be O(1).

fit I ⇢
2

R1(1) R2(1)

0% 0.0348(12) 1.17(15) 1.386(88) 0.912(76)

10% 0.0349(13) 1.19(16) 1.387(88) 0.914(76)

20% 0.0352(13) 1.24(19) 1.390(88) 0.922(78)

100% 0.0367(16) 1.64(31) 1.397(94) 0.941(96)

h:10%, R:0(1) 0.0359(14) 1.29(17) 1.19(22) 1.05(18)

h:20%, R:0(1) 0.0359(14) 1.31(19) 1.19(22) 1.04(19)

The CLN form factors are given as follows

hA1
(w) = hA1

(1)[1 � 8⇢2z + (rh2r⇢
2 + rh2)z

2

+ (rh3r⇢
2 + rh3)z

3]

R1(w) = R1(1) + r11(w � 1) + r12(w � 1)2

R2(w) = R2(1) + r21(w � 1) + r22(w � 1)2 (33)

with the coe�cients computed to be [21]

rh2r = 53 , rh2 = �15 ,

rh3r = �231 , rh3 = 91 ,

r11 = �0.12 , r12 = 0.05 ,

r21 = 0.11 , r22 = �0.06 . (34)

These numbers are the result of a calculation in HQET,
using QCD sum rules and neglecting contributions of
↵s⇤QCD/mc and (⇤QCD/mc)2, as well as smaller e↵ects.
Until recently e↵ects of neglecting these terms have not
been included in fitting the experimental data.

Ref. [21] claims an accuracy of 2%; however this is
based on comparing an expansions in z against some full
expressions. While this tests the convergence of the ex-
pansions, it does not test the accuracy of numerical fac-
tors computed in truncated HQET. In fact the data do
not require any higher order terms in z or w�1. We found
no e↵ect when including a z4 term or (w � 1)3 terms in
(33) with Gaussian priors allowing the coe�cient rh4 to
be up to O(103) and r13, r23 to be up to O(1).

Nevertheless none of this accounts for higher order
terms in the HQET. We can get some idea of how the
fit is a↵ected by allowing the r coe�cients (34) to be fit
parameters with Gaussian priors, with means equal to
the CLN values but with widths which we vary. Table X
shows the results of fitting to the CLN parametrization.
We present six variations, which we describe below. In
order to infer |Vcb| from the lattice hA1

(1) and the fit to
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TABLE VIII: Results for parameters in the chiral-continuum fits, Eq. (21) and (27). Higher order terms retain their prior
values and are not shown while 

B
2 = �0.17(25) and 

B
2 = �0.05(42) for hA1

(1) and h
s
A1
(1) respectively.

c1 c2 d1 d2 f1 f2

hA1
(1) �

B
a0 �0.15(12) 0.27(29) 0.24(40) 0.0(5) 0.24(40) 0.0(5)

h
s
A1
(1) �

B
a0 �0.03(22) 0.05(35) 0.0(5) 0.0(5) 0.0(5) 0.0(5)

B C g �1 �5 �6

hA1
(1) �0.091(27) �0.02(24) 0.521(78) �0.14(44) 0(1) -0.15(97)

h
s
A1
(1) �0.117(31) – – �0.14(44) 0(1) -0.15(97)

TABLE IX: Partial errors (in percentages) for h
(s)
A1

(1). A full
accounting of the breakdown of systematic errors is made dif-
ficult by the fact that smaller priors not well constrained by
the data are mixed in a correlated way by the fitter; these
are reflected in the total systematic uncertainty. Note that
the uncertainty from missing ↵

2
s terms in the matching for

hA1
(1) and h

s
A1
(1) is constrained somewhat by the fit; a naive

estimate would give 3.5% on the fine lattices.

Uncertainty hA1
(1) h

s
A1
(1) hA1

(1)/h
s
A1
(1)

↵
2
s 2.1 2.5 0.4

↵s⇤QCD/mb 0.9 0.9 0.0

(⇤QCD/mb)
2 0.8 0.8 0.0

a
2 0.7 1.4 1.4

gD⇤D⇡ 0.2 0.03 0.2

Total systematic 2.7 3.2 1.7

Data 1.1 1.4 1.4

Total 2.9 3.5 2.2

are shown in Figures 3 and 4 respectively, together with
the result of our fit. The O(a4) and O(a6) parameters
default to their prior values, while the O(a2) parameters
are consistent with zero. We tried various modifications
to our fit, the results of which we present in Appendix F.
Table IX presents a summary and combination of the
uncertainties in our results for hA1

(1) and hs
A1

(1).

C. Isospin breaking e↵ects

The e↵ects of electromagnetic interactions and mu 6=
md on hA1

(1) are negligible compared to the dominant
uncertainties quoted in Table IX. We find only a variation
of 0.25% in the chiral-continuum fits to hA1

(1) whether
the ⇡0 or ⇡+ mass is used as the input value for the phys-
ical limit. Electroweak and Coulomb e↵ects in the decay
rate (1) are presently accounted for at leading order by
a single multiplicative factor ⌘̄EW to be discussed below
in Sec. VII. As lattice QCD uncertainties are reduced in
the future, it will be desirable to more directly calculate
the e↵ects of electromagnetism in a lattice QCD+QED

calculation, where mu 6= md can also be implemented.

VI. RESULTS AND DISCUSSION

We have calculated the zero recoil form factor for
B ! D⇤`⌫ decay using the most physically realistic gluon
field configurations currently available along with quark
discretizations that are highly improved. Our final result
for the form factor, including all sources of uncertainty,
is

F
B!D⇤

(1) = hA1
(1) = 0.895(10)stat(24)sys . (28)

It is clear from this treatment that the dominant source
of uncertainty is the O(↵2

s) uncertainty coming from
the perturbative matching calculation. In principle this
could be reduced by a two-loop matching calculation;
however, such calculations in lattice NRQCD have not
been done before. It is worth noting that for our calcula-
tion this uncertainty is somewhat constrained by the fit,
as is reflected in Table IX. It has also been suggested [62]
that it could be estimated using heavy-HISQ b quarks
on ‘ultrafine’ lattices with a = 0.045 fm and mba < 1.
There we can use the nonperturbative PCAC relation and
the absolute normalization of the pseudoscalar current
to normalise J (0), using (mb + mc)P̂ = Z@µÂµ to find
the matching coe�cient Z and then comparing matrix
elements of this normalized current to the result using
perturbation theory.

Within errors, our result agrees with the result from
the Fermilab Lattice and MILC Collaborations [18],
hA1

(1) = 0.906(4)(12). The higher precision achieved
in this work is due to the use of the same lattice dis-
cretization for the b and c quarks. This enabled them to
avoid the larger current-matching uncertainties present
in our NRQCD-b, HISQ-c work. Nevertheless, the value
of providing a completely independent lattice QCD result
using di↵erent formalisms is self-evident.

After combining the statistical and systematic errors
in quadrature, a weighted average of the two lattice re-
sults yields hA1

(1) = 0.900(11). We use this value in our
discussion in Sec. VII.
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I. INTRODUCTION

Precise determinations of the values of matrix elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1, 2] are important for testing the Standard Model of particle
physics (SM). In this article a precise determination of the magnitude of the CKM matrix
element |Vcb| is reported, based on a measurement of the exclusive decay of B̄0 ! D

⇤+
`
�
⌫̄`

with D
⇤+ ! D

0
⇡
+ and D

⇤+ ! D
+
⇡
0 and its isospin conjugate decay mode. In addition,

the unfolded di↵erential decay rates of four kinematic quantities, described in section II, that
fully characterize the semileptonic decay, are reported for the first time in this decay mode.
These measurements will allow for extractions of |Vcb| using unquenched lattice QCD calcu-
lations of the B̄ ! D

⇤ transition form factors beyond zero recoil when they are available in
the future. This measurement complements the previous Belle untagged result in Ref. [5],
by studying the properties of the B̄

0 ! D
⇤+

`
�
⌫̄` decay using an orthogonal data set: the

second B-meson in the collision is reconstructed using a fully reconstructed B sample. This
high purity sample allows for more precise reconstruction of the decay kinematics, at the
cost of lower e�ciency. Other recent measurements of |Vcb| using the exclusive B̄ ! D

⇤
` ⌫̄`

decay have been performed by the Babar experiment [6–8].
This paper is organized as follows: section II briefly reviews the theory describing semilep-

tonic B̄0 ! D
⇤+

`
�
⌫̄` decays. Section III provides a brief overview of the Belle detector and

the data sets used in this analysis. The event reconstruction and selection criteria are sum-
marized in section IV, while section V provides an overview of the extraction of the inclusive
and di↵erential signal yields. Section VI discusses the unfolding procedure. Section VII re-
views the dominant sources of systematic uncertainty. Section VIII describes the procedure
for extracting the CKM matrix element |Vcb|. Section IX concludes the article, with a brief
summary of the key results.

FIG. 1: The helicity angles ✓`, ✓v, and � that characterize the B̄ ! D⇤ ` ⌫̄` decay are shown: the
helicity angle ✓` is defined as the angle between the lepton and the direction opposite the B̄-meson
in the virtual W -boson rest frame; similarly ✓v is defined as the angle between the D meson and
the direction opposite the B̄-meson in the D⇤ rest frame; finally the angle � is defined as the tilting
angle between the two decay planes spanned by the W � ` and D⇤ �D systems in the B̄-meson
rest frame.
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BIG!
small!

Coefficients calculated through Λ/m using HQET & sum rules

V (q2) =
R1(w)

r0
hA1(w) A2(q

2) =
R2(w)

r0
hA1(w)Ratios

What are the uncertainties for the r ’s? 20%? 100%?

See papers by Bigi, Gambino, Schacht; Grinstein & Kobach; Bernlochner et al.; 
Jaiswal, et al.
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The smallness of the coe�cients in the expansions of
R1 and R2 is likely due to cancellations in the expansions
when ratios are taken. Therefore, assuming a relative er-
ror on the rij (i, j = 1, 2) is probably not correct. We
present 2 fits where these coe�cients are given Gaussian
priors equal to 0 ± 1, while the coe�cients in the ex-
pansion of hA1

(w) are given 10% or 20% uncertainties.
The resulting values for I lie in between the tightly con-
strained fits and the 100% uncertainty fit.

Note that the HQET prediction for R1(1) = 1.27 and
R2(1) = 0.80, but in most fits in the literature (as here)
these are free fit parameters. In fact the world average
fit values di↵er from the HQET estimates: Belle’s world
averages are R1(1) = 1.40(3) and R2(1) = 0.85(2) [16].

The fact that the tightly constrained CLN fits describe
the data well, with good �2 for example, is a success for
HQET. It shows that the important physics has been cap-
tured within the accuracy of the theory. However, now
that we are in the high precision era of flavour physics
experiments, we ought to be wary about the accuracy of
the assumptions which go into fitting the data. The ob-
servation that I increases under a relaxation of assump-
tions about the r-coe�cients agrees with other authors’
findings [22–27].

An alternative parametrization for the hadronic form
factors is the one proposed by Boyd, Grinstein, and
Lebed (BGL) [28]. In their conventions the three form
factors entering (assuming the lepton mass can be ne-
glected) are f(z), F1(z), and g(z). Each of these is ex-
panded in a Taylor series about z = 0 after factoring out
a function intended to account for nearby resonances.
Abbreviating t = q2, form factors are parametrized by

F (t) = QF (t)
KF�1X

k=0

a(F )

k zk(t, t0) . (25)

Throughout this paper we take t0 = t�. With appropri-
ately chosen QF ,

QF (t) =
1

Bn(z)�F (z)
, (26)

the magnitudes of the coe�cients a(F )

n are bounded by
unitarity constraints.

SfF =

Kf�1X

k=0

[(a(f)
k )2 + (a(F1)

k )2]

Sg =

Kg�1X

k=0

(a(g)
k )2 (27)

Even stronger bounds can be imposed if one is able
to include all the B(⇤)

! D(⇤) matrix elements, with
(pseudo)scalar and (axial)vector intial and final states
[25], but this is outside the scope of our analysis here.

The two functions in (26) are the outer functions
�F (z), which can be found in the literature e.g. in

TABLE VIII: Bc vector and axial vector masses below BD
⇤

threshold (7.290 GeV) used in the Blaschke factors. Mass
di↵erences [77] are combined with MBc = 6.2749(8) [78]. We
adopt the model estimates of Ref. [23], up to 3 digits.

M1�/GeV method Ref. M1+/GeV method Ref.

6.335(6) lattice [77] 6.745(14) lattice [77]

6.926(19) lattice [77] 6.75 model [79, 80]

7.02 model [79] 7.15 model [79, 80]

7.28 model [81] 7.15 model [79, 80]

Refs. [23, 24, 28], and the Blaschke factor

Bn(z) =
nY

i=1

z � zPi

1 � zzPi

, zPi = z(M2

Pi
, t�) . (28)

The product is over a set of applicable resonances, the
vector B⇤

c states for g and the axial vector Bc states for f
and F1. The resonances included in the Blaschke factor
should be those with the appropriate quantum numbers
and below scattering threshold. There are 4 Bc vector
and 4 axial-vector states conjectured to be below BD⇤

threshold. Table VIII lists calculations of the vector and
axial vector Bc resonances. The model estimate for the
mass of the heaviest vector state is very close to thresh-
old, so has been left out of several analyses, including
here. The magnitude of the Blaschke factors can be very
sensitive to n, so leaving states out reduces the strength
of unitarity constraints. This is illustrated in Fig. 4 for
the QF (q2) for F = f , F1, and g.

Table IX shows the results of BGL fits to the unfolded
Belle data [16], varying the number of states included in
the Blaschke factor and the number of terms kept in the

z-expansion. Priors for the coe�cients a(F )

k are Gaus-
sians with mean 0 and standard deviation 1. Only the
k = 0 and 1 coe�cients are tabulated; the others are
not constrained by the data and remain statistically con-
sistent with 0. As discussed above, the magnitude of
these coe�cients depends on the number of states in the
Blaschke factor. Nevertheless, the results for I are in-
senstive to this. On the other hand, I does increase by
about 0.001, or approximately 0.7�, when switching from
K = 2 to higher order polynomials in z. (Results remain
the same for K > 4.)

The fits presented in Table IX do not enforce the uni-
tarity bounds (27), but these bounds are not close to be-
ing saturated unless only two resonances are included in
the Blaschke factors. Performing the fits with the bounds
enforced did not significantly a↵ect results.

To the extent that unitarity constraints do not a↵ect
the BGL fits, then a simpler approach would be to repre-
sent Q(F )(t) by a simple pole, as in the simplified series
expansion (BCL) [32]. That is, one can parametrize the
form factors by (25) with

QF (t) =
NF

1 �
t

MB+MD⇤

. (29)

Blaschke 
factor

Unitarity 
bounds

MB +MD⇤ = 7.290 GeV

Predictions for Bc vector & 
axial vector resonances
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F (t) = QF (t)
KF�1X

k=0

a(F )
k zk(t, t0) QF (t) =

NF

1� t
M2

P

Using BGL as a guide, choose Nf = 300, NF1 = 7000, Ng = 5 

Simple form which uses less theoretical information.

Clean baseline, against which affects of theoretical input (HQET, unitarity 
bounds) can be measured
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TABLE IX: Results of z-expansion fits (25), either using the BGL (26) or BCL (29) parametrization. Unitarity constraints
are not enforced in the fit, but the sums Sg and SfF (27) are given for reference (see text). The number of 1+

/1� resonances
included in the Blaschke factor is n

+
B/n

�
B . Terms up to O(zK�1) are included in the fits. Coe�cients of higher order terms are

consistent with zero.

fit n
+
B n

�
B K I a

(f)
0 a

(f)
1 a

(F1)
0 a

(F1)
1 a

(g)
0 a

(g)
1 SfF Sg

BGL 2 2 2 0.0366(14) 0.02996(38) �0.119(51) 0.005017(63) �0.0146(40) 0.031(15) 0.88(50) 0.015(12) 0.78(89)

BGL 2 2 3 0.0376(16) 0.02996(38) �0.147(62) 0.005016(63) �0.030(13) 0.029(14) 0.98(50) 0.13(32) 0.97(98)

BGL 2 2 4 0.0376(16) 0.02996(38) �0.147(62) 0.005016(63) �0.030(13) 0.029(14) 0.98(50) 0.13(33) 0.97(98)

BGL 3 3 2 0.0368(15) 0.01908(24) �0.069(36) 0.003195(40) �0.0073(27) 0.0137(85) 0.63(30) 0.0051(49) 0.39(38)

BGL 3 3 3 0.0379(17) 0.01908(24) �0.088(47) 0.003195(40) �0.0180(85) 0.0125(82) 0.68(31) 0.06(21) 0.46(41)

BGL 3 3 4 0.0379(17) 0.01908(24) �0.088(47) 0.003195(40) �0.0180(87) 0.0125(82) 0.68(31) 0.06(21) 0.46(41)

BGL 4 3 2 0.0369(15) 0.01225(15) �0.035(23) 0.002051(26) �0.0032(18) 0.0137(84) 0.62(30) 0.0014(17) 0.39(37)

BGL 4 3 3 0.0380(17) 0.01225(15) �0.049(36) 0.002051(26) �0.0101(57) 0.0129(84) 0.66(32) 0.04(25) 0.43(42)

BGL 4 3 4 0.0380(17) 0.01225(15) �0.049(36) 0.002051(26) �0.0102(59) 0.0129(86) 0.66(33) 0.04(25) 0.43(43)

BCL – – 2 0.0367(15) 0.01496(19) �0.047(27) 0.002935(37) �0.0029(27) 0.027(13) 0.77(44) 0.0025(26) 0.60(69)

BCL – – 3 0.0378(17) 0.01496(19) �0.065(40) 0.002935(37) �0.0135(82) 0.026(13) 0.82(46) 0.08(38) 0.67(75)

BCL – – 4 0.0382(18) 0.01497(19) �0.310(42) 0.002936(37) �0.0151(83) 0.109(16) �0.29(37) 0.143(67) 0.10(22)

BCL – – 5 0.0382(18) 0.01497(19) �0.310(42) 0.002936(37) �0.0151(83) 0.109(16) �0.29(37) 0.143(67) 0.10(22)

The normalization NF can be chosen so that the series
coe�cients are of the same order of magnitude as in a
particular BGL expansion. We take Nf = 300, NF1

=

7000, and Ng = 5. Once again we fit with priors for a(F )

k
equal to 0±1. The results for I show the same behaviour
for the BCL fits as for the BGL fits.

The virtue of the BCL fit is in its simplicity. The BGL
fit requires theory input for the outer functions �F : per-
tubatively calculated derivatives of two-point functions
at q2 = 0 and nI , the number of spectator quarks ad-
justed to account for SU(3)F breaking. (In the BGL fits
here We take the values given in Table 2 of Ref. [23].)
The Blaschke factor requires as input model estimates
for the excited Bc resonances to include in the Blaschke
factor. If unitarity bounds become tight enough to have
an e↵ect on the fits to data, then the e↵ects of theoretical
assumptions needs to be carefully included in the error
analysis. On the other hand, the BCL fits only take as
additional input the mass of a single resonance, available
to very good precision from lattice QCD. In the future,
fits to the BCL simplified z-expansion could provide a
clean benchmark fit.

Naturally one may obtain a more precise determina-
tion of |Vcb| by including all relevant information, from
HQET, by imposing stronger unitarity bounds [25], and
including light cone sum rule calculations of form fac-
tors at large recoil [82]. Comparison of the di↵erent ap-
proaches would be helpful to highlight the impact of in-
cluding di↵erent ingredients.

In Fig. 5 we compare the results of the tightly con-
strainted CLN fit, the BGL and BCL fits with K = 4,
and the Belle data [16]. For the time being, with only
one experimental data set available to carry out these

investigations, determinations of |Vcb| from B ! D⇤`⌫
are less certain than has been thought. The BGL and
BCL fits to Belle data indicate I = 0.038(2). Ref. [18]
cites a private communication with C. Schwanda giving
⌘̄EW = ⌘EW ⌘Coulomb = 1.0182(16) as the product of the
electroweak factor ⌘EW = 1.0066 and a term accounting
for electromagnetic interactions between the charged D⇤

and lepton in the final state. Combining this with the
weighted average for hA1

(1) from Fermilab/MILC [18]
and this work, we arrive at

|Vcb| = (41.4 ± 2.2) ⇥ 10�3 (30)

where the error is dominated by the experimental and
related fitting uncertainty.

VIII. CONCLUSIONS

We present new unquenched lattice QCD determina-
tions of the zero-recoil form factors hA1

(1) and hs
A1

(1),

sometimes denoted F
B!D⇤

(1) and F
Bs!D⇤

s (1), respec-
tively. This is a valuable, independent check of the Fer-
milab/MILC result for hA1

(1) [18]. More experimental
data about the fully di↵erential decay rate would help
settle uncertainties associated with fitting to form fac-
tor parametrizations. Lattice QCD data away from zero
recoil could also help reduce these uncertainties. Prelimi-
nary results from the Fermilab/MILC collaboration were
presented at the Lattice 2017 conference.
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TABLE IX: Results of z-expansion fits (25), either using the BGL (26) or BCL (29) parametrization. Unitarity constraints
are not enforced in the fit, but the sums Sg and SfF (27) are given for reference (see text). The number of 1+

/1� resonances
included in the Blaschke factor is n
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B/n

�
B . Terms up to O(zK�1) are included in the fits. Coe�cients of higher order terms are

consistent with zero.
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�
B K I a
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1 a
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0 a

(F1)
1 a
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0 a

(g)
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The normalization NF can be chosen so that the series
coe�cients are of the same order of magnitude as in a
particular BGL expansion. We take Nf = 300, NF1

=

7000, and Ng = 5. Once again we fit with priors for a(F )

k
equal to 0±1. The results for I show the same behaviour
for the BCL fits as for the BGL fits.

The virtue of the BCL fit is in its simplicity. The BGL
fit requires theory input for the outer functions �F : per-
tubatively calculated derivatives of two-point functions
at q2 = 0 and nI , the number of spectator quarks ad-
justed to account for SU(3)F breaking. (In the BGL fits
here We take the values given in Table 2 of Ref. [23].)
The Blaschke factor requires as input model estimates
for the excited Bc resonances to include in the Blaschke
factor. If unitarity bounds become tight enough to have
an e↵ect on the fits to data, then the e↵ects of theoretical
assumptions needs to be carefully included in the error
analysis. On the other hand, the BCL fits only take as
additional input the mass of a single resonance, available
to very good precision from lattice QCD. In the future,
fits to the BCL simplified z-expansion could provide a
clean benchmark fit.

Naturally one may obtain a more precise determina-
tion of |Vcb| by including all relevant information, from
HQET, by imposing stronger unitarity bounds [25], and
including light cone sum rule calculations of form fac-
tors at large recoil [82]. Comparison of the di↵erent ap-
proaches would be helpful to highlight the impact of in-
cluding di↵erent ingredients.

In Fig. 5 we compare the results of the tightly con-
strainted CLN fit, the BGL and BCL fits with K = 4,
and the Belle data [16]. For the time being, with only
one experimental data set available to carry out these

investigations, determinations of |Vcb| from B ! D⇤`⌫
are less certain than has been thought. The BGL and
BCL fits to Belle data indicate I = 0.038(2). Ref. [18]
cites a private communication with C. Schwanda giving
⌘̄EW = ⌘EW ⌘Coulomb = 1.0182(16) as the product of the
electroweak factor ⌘EW = 1.0066 and a term accounting
for electromagnetic interactions between the charged D⇤

and lepton in the final state. Combining this with the
weighted average for hA1

(1) from Fermilab/MILC [18]
and this work, we arrive at

|Vcb| = (41.4 ± 2.2) ⇥ 10�3 (30)

where the error is dominated by the experimental and
related fitting uncertainty.
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tions of the zero-recoil form factors hA1
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sometimes denoted F
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(1) and F
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s (1), respec-
tively. This is a valuable, independent check of the Fer-
milab/MILC result for hA1

(1) [18]. More experimental
data about the fully di↵erential decay rate would help
settle uncertainties associated with fitting to form fac-
tor parametrizations. Lattice QCD data away from zero
recoil could also help reduce these uncertainties. Prelimi-
nary results from the Fermilab/MILC collaboration were
presented at the Lattice 2017 conference.
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FIG. 7: Comparison of fit results to experimental data [16]. The binned fit results are slightly o↵set from the bin midpoints
for clarity. See Appendix G and Ref. [16] for definitions.

FIG. 8: Comparison of the |Vcb| from (41) with the latest
determinations from B ! Xc`⌫ [19, 20] and B ! D`⌫ [33].

including the physical point. Our results are

F
B!D⇤

(1) = hA!
(1) = 0.895(10)stat(24)sys

F
Bs!D⇤

s (1) = hs
A!

(1) = 0.883(12)stat(28)sys

F
B!D⇤

(1)

FBs!D⇤
s (1)

=
hA1

(1)

hs
A1

(1)
= 1.003(14)stat(17)sys . (42)

This result for hA1
(1) provides a valuable, indepen-

dent check of the Fermilab/MILC result [18]. We have
used completely independent sets of gauge field config-
urations and di↵erent formulations for the charm and
bottom quarks. The two results are in good agreement.

While the determination of |Vcb| using these results is
complicated by the need to investigate assumptions used
in extrapolating experimental data to zero recoil, series
expansion fits to the unfolded Belle data yield

|Vcb| = (41.3 ± 2.2) ⇥ 10�3 . (43)

This is consistent with recent determinations using ex-
clusive B ! D`⌫ and inclusive decays (Fig 8).

A reanalysis of BaBar data for the di↵erential decay
rate would complement the unfolded Belle data used
here. We can also look forward to new data from Belle
II, after which the the precision of |Vcb| from B ! D⇤`⌫
is likely to be much improved. Lattice QCD data away
from zero recoil will also help reduce the uncertainties.
Preliminary results from the Fermilab/MILC collabora-
tion were presented at the Lattice 2017 conference [69].

Our result for the Bs ! D⇤
s form factor is the first

complete calculation of hs
A1

(1). In the future, measure-
ments of the exclusive decays with a strange specta-
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This result for hA1
(1) provides a valuable, indepen-

dent check of the Fermilab/MILC result [18]. We have
used completely independent sets of gauge field config-
urations and di↵erent formulations for the charm and
bottom quarks. The two results are in good agreement.

While the determination of |Vcb| using these results is
complicated by the need to investigate assumptions used
in extrapolating experimental data to zero recoil, series
expansion fits to the unfolded Belle data yield

|Vcb| = (41.3 ± 2.2) ⇥ 10�3 . (43)

This is consistent with recent determinations using ex-
clusive B ! D`⌫ and inclusive decays (Fig 8).

A reanalysis of BaBar data for the di↵erential decay
rate would complement the unfolded Belle data used
here. We can also look forward to new data from Belle
II, after which the the precision of |Vcb| from B ! D⇤`⌫
is likely to be much improved. Lattice QCD data away
from zero recoil will also help reduce the uncertainties.
Preliminary results from the Fermilab/MILC collabora-
tion were presented at the Lattice 2017 conference [69].

Our result for the Bs ! D⇤
s form factor is the first

complete calculation of hs
A1

(1). In the future, measure-
ments of the exclusive decays with a strange specta-
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• Removal of theory assumptions 
resolves inclusive/exclusive 
tension, at least in Belle data 

• Look forward to BaBar analysis 

• Look forward to LQCD results at 
non-zero recoil
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FIG. 5: Comparison of the prefactor QF (q
2) for the BGL and

BCL series expansions of form factor F = f , F1, and g, from
top to bottom. Curves are normalized by QF (0), which is
given in the legend.

In Fig. 7 we compare the fit results, integrated over the
experimental bins, of the tightly constrained CLN fit and
the BGL and BCL fits (with K = 4) to the Belle data
[16]. The agreement is generally good, with the notable
exception of the d�/dw in the smallest w bin, where the
CLN result is in greater tension with the data than the
BGL and BCL results.

For the time being, with only one experimental data
set available to carry out these investigations, deter-

0.032 0.034 0.036 0.038 0.040 0.042 0.044
I

CLN 0%

CLN h : 10%, R : 0(1)

BGL 4 + 3

BCL

FIG. 6: Values of I = |⌘̄EWVcb|hA1
(1) obtained from di↵erent

fit ansätze (see text).

minations of |Vcb| from B ! D⇤`⌫ are less certain
than has been thought. The BGL and BCL fits to
Belle data indicate I = 0.038(2). Ref. [18] cites a pri-
vate communication with C. Schwanda giving ⌘̄EW =
⌘EW ⌘Coulomb = 1.0182(16) as the product of the elec-
troweak factor ⌘EW = 1.0066(16) and a term accounting
for electromagnetic interactions between the charged D⇤

and lepton in the final state. Combining this with the
weighted average for hA1

(1) from Fermilab/MILC [18]
and this work, we arrive at

|Vcb| = (41.3 ± 2.2) ⇥ 10�3 (41)

where the error is dominated by the experimental and re-
lated fitting uncertainty. This determination agrees well
with both those from inclusive and exclusive B ! D`⌫
decays as shown in Fig. 8.

One may ultimately obtain a more precise determina-
tion of |Vcb| by including all relevant information, from
HQET, by imposing stronger unitarity bounds [25], and
including light cone sum rule calculations of form fac-
tors at large recoil [68]. Comparison of the di↵erent ap-
proaches would be helpful to highlight the impact of in-
cluding di↵erent ingredients.

VIII. CONCLUSIONS

We present new unquenched lattice QCD determina-
tions of the zero-recoil form factors hA1

(1) and hs
A1

(1),

sometimes denoted F
B!D⇤

(1) and F
Bs!D⇤

s (1), respec-
tively. We have used 8 ensembles spanning 3 lattice spac-
ings and 3 values of light-to-strange quark mass ratios,

I = |Vcb ⌘̄EW|hA1(1)

14

FIG. 7: Comparison of fit results to experimental data [16]. The binned fit results are slightly o↵set from the bin midpoints
for clarity. See Appendix G and Ref. [16] for definitions.
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FIG. 8: Comparison of the |Vcb| from (41) with the latest
determinations from B ! Xc`⌫ [19, 20] and B ! D`⌫ [33].

including the physical point. Our results are

F
B!D⇤

(1) = hA!
(1) = 0.895(10)stat(24)sys

F
Bs!D⇤

s (1) = hs
A!

(1) = 0.883(12)stat(28)sys

F
B!D⇤

(1)

FBs!D⇤
s (1)

=
hA1

(1)

hs
A1

(1)
= 1.003(14)stat(17)sys . (42)

This result for hA1
(1) provides a valuable, indepen-

dent check of the Fermilab/MILC result [18]. We have
used completely independent sets of gauge field config-
urations and di↵erent formulations for the charm and
bottom quarks. The two results are in good agreement.

While the determination of |Vcb| using these results is
complicated by the need to investigate assumptions used
in extrapolating experimental data to zero recoil, series
expansion fits to the unfolded Belle data yield

|Vcb| = (41.3 ± 2.2) ⇥ 10�3 . (43)

This is consistent with recent determinations using ex-
clusive B ! D`⌫ and inclusive decays (Fig 8).

A reanalysis of BaBar data for the di↵erential decay
rate would complement the unfolded Belle data used
here. We can also look forward to new data from Belle
II, after which the the precision of |Vcb| from B ! D⇤`⌫
is likely to be much improved. Lattice QCD data away
from zero recoil will also help reduce the uncertainties.
Preliminary results from the Fermilab/MILC collabora-
tion were presented at the Lattice 2017 conference [69].

Our result for the Bs ! D⇤
s form factor is the first

complete calculation of hs
A1

(1). In the future, measure-
ments of the exclusive decays with a strange specta-

Different fit Ansätze

“std”

Our 
preferred



Conclusions
• Lattice field theory: nonperturbative, numerical 

approach connecting hadronic observables and 
fundamental quark interactions 

• Lattice QCD plays an important role in studies of 
quark flavour 

• Case study: B → D* l ν 

• Projects underway: more B semileptonic decay 
form factors, B mixing matrix elements, …
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J (0)i
latt (x) = c̄�i�5Q

J (1)i
latt (x) = � 1

2amb
c̄�i�5� ·�Q

⇤2
QCD

m2
b

1-loop coefficients η & τ from Monahan, Shigemitsu, Horgan, PRD87 (2013)

Truncation errors enter at order: included as Gaussian noise

hJ ii = (1 + ↵s(⌘ � ⌧))hJ (0)i
latt i+ hJ (1)i

latt i+ e4
⇤2

QCD

m2
b
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6

of singular eigenvectors rather than replacement resulted
in faster and more numerically stable fits, so it is these
for which we present data. We also exclude points close
in time to the source and sink to suppress excited state
contributions and speed up the fit.

TABLE III: Parameters relevant for operator matching [68].

set Z �⌘ ⌧ ↵s

1 0.9930 0.260(3) 0.0163(1) 0.346

2 0.9933 0.260(3) 0.0165(1) 0.344

3 0.9930 0.260(3) 0.0165(1) 0.343

4 0.9972 0.191(3) 0.0216(1) 0.311

5 0.9974 0.185(3) 0.0221(1) 0.308

6 0.9974 0.185(3) 0.0221(1) 0.307

7 0.9994 0.091(3) 0.0330(1) 0.267

8 0.9994 0.091(3) 0.0330(1) 0.267

TABLE IV: Fit results for the zero-recoil form factor F(1) =
hA1

(1) for both B ! D
⇤ and Bs ! D

⇤
s . ToDo: ratio?

set hA1
(1) h

s
A1

(1)

1 0.8606(91)

2 0.871(13)

3 0.8819(96) 0.8667(42)

4 0.8498(94)

5 0.8570(84)

6 0.8855(50) 0.8662(61)

7 0.8709(75)

8 0.8886(63) 0.8715(44)

TABLE V: Matrix elements of currents contributing at
O(↵s⇤QCD/MB) for B ! D

⇤. Note the approximate cancel-

lation between the mixing down term ↵s⌧hJ
(0)
latti and hJ

(1)
latti

as we would expect from Luke’s theorem.

hJ
(1)
latti hJ

(2)
latti ↵s⌧hJ

(0)
latti

3 0.0078(66) 0.014(1) 0.00559(8)

6 0.0055(48) 0.017(4) 0.0064(1)

8 0.0048(6) 0.006(1) 0.0080(9)

B. Chiral-continuum extrapolation

By carrying out the calculation using 8 ensembles,
spanning 3 values of lattice spacing and 3 values of the
light quark mass, we can quantify many of the systematic
uncertainties by performing a least-squares fit to a func-

tion which accounts for unphysical parameters or trunca-
tion errors. Below we describe how the fits address each
of these sources of uncertainty then present results of the
fits.
Matching uncertainties – Our primary source of sys-

tematic error is in matching between the continuum and
lattice axial currents. When we construct the matched
current from the matrix elements of the lattice currents
we include terms to account for truncation errors

J = (1 + ↵s(⌘ � ⌧))J (0)

latt
+ (1 + e2↵s)J

(1)

latt

+ e3
↵s⇤QCD

mb
+ e4

⇤2

QCD

m2

b

(14)

The parameters e3 and e4 are assumed to be uncorre-
lated and e↵ectively add an estimate of the truncation
uncertainty to the data. (Eq. (14) includes a rescaling of
the currents by the massive-HISQ tree-level wavefunction

renormalisation.) We found that the value for hJ (1)

latt
i was

numerically very small as was that of hJ (2)

latt
i so we absorb

them into a single term contributing at O(↵s⇤QCD/mb).
We also omit adding the O(↵2

s) error here in favour of
including it as a prior in the chiral-continuum extrapo-
lation, since, in principle, some information may be ex-
tracted from the chiral perturbation theory result.

According to Luke’s theorem the leading order correc-
tions in 1/mb vanish at zero recoil to all orders in ↵s

[72]. This means that we expect J (1) to exactly cancel
the mixing down contribution / ↵s/amb. It also means
that we can set the coe�cients e2 and e3 to zero. We
include some amb dependence in the (⇤QCD/mb)2 error
by using

e4 = e0
4

h
1 + e5

✓
amb � 2

2

◆
+ e6

✓
amb � 2

2

◆2 i
. (15)

The NRQCD action is improved through
O(↵s⇤QCD/mb) according to the heavy-light power
counting. Higher order errors are therefore included in
those introduced for the matching coe�cients.
Tuning uncertainties - sea quark masses. – We include

two expressions in our fit function to take into account
the di↵erence between the sea quark masses and the phys-
ical quark masses. For the u/d and s quarks we include
a multiplicative factor

�sea = 1 + c1(�xsea/mphys

sea
) + c2(�xsea/mphys

sea
)2

where msea = 2ml + ms and �xsea = msea � mphys

sea
. The

physical masses are taken from [73] and are computed
using the ⌘s mass. We take mphys

l /mphys

s = 27.4 [62].
We also include the multiplicative factor

�c = 1 + d1(�mc/mphys

c ) + d2(�mc/mphys

c )2

where �mc = mc � mphys

c and the factor

�b = 1 + f1(�mb/mphys

b ) + f2(�mb/mphys

b )2

hJ ii = (1 + ↵s(⌘ � ⌧))hJ (0)i
latt i+ hJ (1)i

latt i+ e4
⇤2

QCD

m2
b
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hA1(1) = (1 + �Ba )B + �ga
g2

48⇡2f2
⇥ chiral logs + C

M2
⇡

⇤2
�

+ e1↵
2
s

h
1 + e5(amb � 2)/2 + e6((amb � 2)/2)2

i
J (0)
latt

Fit function:
Static 
limit

with g2 = 0.53(8)

δα : disc 
errors

light quark 
mass

2-loop matching error

The αs2 uncertainty is the largest, by a factor of 2, compared to others


