Learning Structured Models of Physics

Peter Battaglia

Seminar: Particle Physics Group University of Birmingham (virtual) - May 6, 2020

Image and language processing

Image and language processing

Games (via deep reinforcement learning)

Image and language processing

What do many of deep learning's successes have in common?

Games (via deep reinforcement learning)

What do many of deep learning's successes have in common?

- * Vectors
- * Grids
- * Sequences

But many important domains are richly structured

Biological species Bacteria Archaea Eukaryota Filamentous Boateria Britamoebae Slime Animals molds Proteobaeteria Proteobaet

Sub-atomic particles

Code

The classic deep learning toolkit...

"My data is **vectors**": Multi-layer perceptron (MLP)

"My data is **grids**": Convolutional neural network (CNN)

"My data is **sequences**": Recurrent neural network (RNN)

The classic deep learning toolkit...

"My data is **vectors**": Multi-layer perceptron (MLP) "My data is **grids**": Convolutional neural network (CNN) "My data is **sequences**": Recurrent neural network (RNN)

...is not well-suited to reasoning over structured representations.

The classic deep learning toolkit...

"My data is **vectors**":
Multi-layer perceptron (MLP)

"My data is **grids**": Convolutional neural network (CNN) "My data is **sequences**":

Recurrent neural network (RNN)

...is not well-suited to reasoning over structured representations.

But deep networks that operate on graphs are.

Background: Graph Neural Networks

General idea

- Analogous to a convolutional network, but over arbitrary graphs (rather than just grids)
- Can learn to reason about entities and their relations.

Key literature surveys

- Scarselli et al. (2009) "The Graph Neural Network Model".

 Summarizes the initial papers on the topic from ~2005-2009. Original innovation, general formalism.
- <u>Li et al. (2015) "Gated graph sequence neural networks"</u>. Simplified the formalism, trained via backprop, used RNNs for sharing update steps across time.
- Bronstein et al. (2016) "Geometric deep learning: going beyond Euclidean data". Survey of spectral and spatial approaches for deep learning on graphs.
- Gilmer et al. (2017) "Neural Message Passing for Quantum Chemistry".
 Introduced "message-passing neural network" (MPNNs) formalism, unifying various approaches such as graph convolutional networks.
- <u>Battaglia et al. (2018). "Relational inductive biases, deep learning, and graph networks"</u>. Introduced the "graph network" (GN) formalism, extends MPNNs, unifies non-local neural networks/self-attention/Transformer.

Graph Networks (GNs)

Why do we need another graph neural network variant?

- · We designed GNs to be both expressive, and easy to implement
- A GN block is a "graph-to-graph" function approximator
 - The output graph's structure (number of nodes and edge connectivity) matches the input graph's
 - The output graph-, node-, and edge-level attributes will be functions of the input graph's

Battaglia et al., 2018, arXiv

Composing GN blocks

The GN's graph-to-graph interface promotes stacking GN blocks, passing one GN's output to another GN as input

Battaglia et al., 2018, arXiv

Edge function

$$\mathbf{e}_k' \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

 Compute "message" from node and edge attributes associated with an edge

Edge function

$$\mathbf{e}_k' \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

 Compute "message" from node and edge attributes associated with an edge

Edge function

$$\mathbf{e}_k' \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

 Compute "message" from node and edge attributes associated with an edge

n-body System

Edge function

$$\mathbf{e}_k' \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

 Compute "message" from node and edge attributes associated with an edge

Message aggregation

$$\bar{\mathbf{e}}_i' \leftarrow \sum_{r_k = i} \mathbf{e}_k'$$

Node function

$$\mathbf{v}_i' \leftarrow \phi^v(\bar{\mathbf{e}}_i', \mathbf{v}_i, \mathbf{u})$$

 Update node info from previous node state and aggregated "messages"

n-body System

Edge function

$$\mathbf{e}_k' \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

 Compute "message" from node and edge attributes associated with an edge

Message aggregation

$$\bar{\mathbf{e}}_i' \leftarrow \sum_{r_k=i} \mathbf{e}_k'$$

Node function

$$\mathbf{v}_i' \leftarrow \phi^v(\bar{\mathbf{e}}_i', \mathbf{v}_i, \mathbf{u})$$

 Update node info from previous node state and aggregated "messages"

n-body System

Edge function

$$\mathbf{e}_k' \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

 Compute "message" from node and edge attributes associated with an edge

Message aggregation

$$\bar{\mathbf{e}}_i' \leftarrow \sum_{r_k=i} \mathbf{e}_k'$$

Node function

$$\mathbf{v}_i' \leftarrow \phi^v(\bar{\mathbf{e}}_i', \mathbf{v}_i, \mathbf{u})$$

 Update node info from previous node state and aggregated "messages"

n-body System

\mathbf{e}_k

Edge function

$$\mathbf{e}_k' \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

 Compute "message" from node and edge attributes associated with an edge

Message aggregation

$$\bar{\mathbf{e}}_i' \leftarrow \sum_{r_k=i} \mathbf{e}_k'$$

Node function

$$\mathbf{v}_i' \leftarrow \phi^v(\bar{\mathbf{e}}_i', \mathbf{v}_i, \mathbf{u})$$

 Update node info from previous node state and aggregated "messages" Trained to predict body coordinates

Physical systems as graphs

n-body

Nodes: bodies

Edges: gravitational forces

Balls

Nodes: balls

 $\underline{\text{Edges}}\text{: rigid collisions between}$

balls, and walls

String

Nodes: masses

Edges: springs and rigid

collisions

1000-step rollouts of true (top row) vs predicted (bottom row)

Battaglia et al., 2016, NeurIPS

Zero-shot generalisation to larger systems

Battaglia et al., 2016, NeurIPS

Interaction Network: Predicting potential energy

n-body System

Node aggregation and global function

$$ar{\mathbf{v}}' \leftarrow \sum_i \mathbf{v}_i'$$
 $\mathbf{u}' \leftarrow \phi^u(ar{\mathbf{v}}')$

 Rather than making node-wise predictions, node updates can be used to make global predictions.

Trained to predict system's potential energy

Visual interaction network: Simulate from input images

Multi-frame encoder (conv net-based)

Relation Net Self dynamics

Global affector

Interaction network

Watters et al., 2017, NeurIPS

Visual interaction network: Simulate from input images

Can even predict invisible objects, inferred from how they affect visible ones

Watters et al., 2017, NeurIPS

Full "Graph Network" generalizes/extends "Interaction Network"

Edge block

For each edge, $\mathbf{e}_k, \mathbf{v}_{s_k}, \mathbf{v}_{r_k}, \mathbf{u}$, are passed to an "edge-wise function": $\mathbf{e}_k' \leftarrow \phi^e\left(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k}, \mathbf{u}\right)$

Node block

For each node, $\bar{\mathbf{e}}_i', \mathbf{v}_i, \mathbf{u}$, are passed to a "node-wise function":

$$\mathbf{v}_i' \leftarrow \phi^v \left(\mathbf{\bar{e}}_i', \mathbf{v}_i, \mathbf{u} \right)$$

Global block

Across the graph, $\,\bar{\bf e}',\bar{\bf v}',{\bf u}\,\,$, are passed to a "global function":

$$\mathbf{u}' \leftarrow \phi^u \left(\mathbf{\bar{e}}', \mathbf{\bar{v}}', \mathbf{u} \right)$$

Systems: "DeepMind Control Suite" (Mujoco) & real JACO

DeepMind Control Suite (Tassa et al., 2018)

Kinematic tree of the actuated system as a graph

Controllable physical system as a graph:

- Bodies → Nodes
- Joints → Edges
- Global properties

Sanchez-Gonzalez et al., 2018, ICML

Forward model: Multiple systems & zero-shot generalization

Single model trained:

Pendulum, Cartpole, Acrobot, Swimmer6
 & Cheetah

Zero-shot generalization: Swimmer

• # training links: {3, 4, 5, 6, -, 8, 9, -, -, ...}

• # testing links: {-, -, -, 7, -, -, 10-14}

Sanchez-Gonzalez et al., 2018, ICML

Forward model: Real JACO data

Sanchez-Gonzalez et al., 2018, ICML

Control: Model-based planning

The GN-based forward model is differentiable, so we can backpropagate through it to search for a sequence of actions that maximize reward.

Sanchez-Gonzalez et al., 2018, ICML

Control: Multiple systems via a single model

Sanchez-Gonzalez et al., 2018, ICML

Learning to simulate fluids and complex materials

Sanchez-Gonzalez et al., 2020, arXiv/under review

Water-3D (14k particles, SPH)

Sand-3D (19k particles, MPM)

Goop-3D (19k particles, MPM)

Multiple materials, generalization

Simulation	Prediction			

BoxBath

- OGN and HOGN used RK4 integrator (we also tested lower order RK integrators)
- · We also tested symplectic integrators, and found HOGN has better energy accuracy/conservation

Learning symbolic physics with graph networks

Learning symbolic physics with graph networks

Experiments

- 2D and 3D n-body (1/r and 1/r² force laws)
- · Mass-spring system

Architecture

Interaction network with message vectors constrained to 2 or 3 dimensions

Results

- After training, message vectors are linear transforms of the true forces
- Symbolic regression of the message function's formula reveals the analytical form of the true force laws

Cranmer et al., 2019, arXiv/NeurIPS 2019 workshop

Inferring relations in dot motion

Model: Relation Network - simple GN with no node update)

Trained on mass-spring systems

Santoro et al., 2017, NeurIPS

Inferring relations in dot motion

Model: Relation Network - simple GN with no node update)

Trained on mass-spring systems

Santoro et al., 2017, NeurIPS

Learning deep generative models of chemical graphs

- · Generative model defines joint distribution over graph-generating decisions (structure and order).
- Analogous to a decision tree, where decisions are selected by a GNN:
 - 1. Add node? If NO, terminate.
 - 2. If YES, Add edge? If NO, goto (1).
 - 3. If YES, Pick node to add edge to. Goto (2).
- Training optimizes the joint log-likelihood of structure and order, with Monte Carlo integration over permutations.

Li et al., 2018, arXiv

Learning deep generative models of chemical graphs

• GrammarVAE (Kusner et al., 2017) has qualitatively poorer samples from the prior.

• Our model learns a more accurate model than LSTMs, and can generate more novel molecules.

Arch	Grammar	Ordering	N	NLL	%valid	%novel
LSTM	Graph	Fixed	1	22.06	85.16	80.14
LSTM	Graph	Random	O(n!)	63.25	91.44	91.26
Graph	Graph	Fixed	1	20.55	97.52	90.01
Graph	Graph	Random	O(n!)	58.36	95.98	95.54

Li et al., 2018, arXiv

.OBJ file: cube

```
      v
      0.000000
      2.000000
      2.000000

      v
      0.000000
      0.000000
      2.000000

      v
      2.000000
      0.000000
      2.000000

      v
      2.000000
      2.000000
      2.000000

      v
      0.000000
      2.000000
      0.000000

      v
      2.000000
      0.000000
      0.000000

      v
      2.000000
      0.000000
      0.000000

      v
      2.000000
      2.000000
      0.000000
```


Architecture: Transformer-based

Two phases:

- 1. Vertex model
- 2. Face model

Class-conditional samples

Class conditional samples

Build Graph Nets in Tensorflow

github.com/deepmind/graph nets

```
# Provide your own functions to generate graph-structured data.
input_graphs = get_graphs()

# Create the graph network.
graph_net_module = gn.modules.GraphNetwork(
    edge_model_fn=lambda: snt.nets.MLP([32, 32]),
    node_model_fn=lambda: snt.nets.MLP([32, 32]),
    global_model_fn=lambda: snt.nets.MLP([32, 32]))

# Pass the input graphs to the graph network, and return the output graphs.
output_graphs = graph_net_module(input_graphs)
```

For GNN libraries in PyTorch, check out:

- pytorch_geometric: github.com/rustyls/pytorch_geometric (for a GN analog, see MetaLayer)
- Deep Graph Library: github.com/dmlc/dgl

Build Graph Nets in Tensorflow

github.com/deepmind/graph nets

Build Graph Nets in Tensorflow

github.com/deepmind/graph_nets

IPython Notebook demos Shortest path: predictions at each message-passing step (All use same architecture) Shortest path: Sort: item-to-item connections Sorting: Predicted True Physics: rollout of mass-spring system pinned at ends Predicting physics:

Time 8

Time 16

Time 32

True Predicted

Conclusions

- Graph neural networks: a first-class member of the deep learning toolkit.
- Learned message-passing on graphs can capture complex physical knowledge.
- "Graph Nets" support learning simulation, as well as other forms of structured reasoning and decision-making.
- Build Graph Nets in Tensorflow: github.com/deepmind/graph nets.

Key collaborators

Alvaro Sanchez-Gonzalez Jonny Godwin Tobi Pfaff Rex Ying Charlie Nash Yaroslav Ganin Miles Cranmer

Shirley Ho

Jess Hamrick Victor Bapst Razvan Pascanu Nicholas Heess Ali Eslami Oriol Vinyals Jure Leskovec

References

Battaglia et al., 2018 arXiv

Battaglia et al., 2016, NeurIPS

Watters et al., 2017, NeurIPS

Sanchez-Gonzalez et al., 2018, ICML

Sanchez-Gonzalez et al., 2020, arXiv/under review

Cranmer et al., 2019, arXiv/NeurIPS workshop

Sanchez-Gonzalez et al., 2019, arXiv/NeurIPS workshop

Li et al., 2018, arXiv

Discussion: Going beyond everyday scales

Basic concepts Particle Physics

Setting the scale

(http://www.chem4kids.com/files/atom_intro.html)

