Learning Structured Models of Physics

Peter Battaglia
@ DeepMind

Seminar: Particle Physics Group
University of Birmingham (virtual) - May 6, 2020



What is deep learning good at?



What is deep learning good at?

Image and language processing

v Language | |A group of people
Deep CNN Generating shopping at an
RNN outdoor market.

S >
§ ] @ There are many
vegetables at the

fruit stand.




What is deep learning good at?

Image and language processing

v Language | |A group of people
Deep CNN Generating shopping at an
RNN outdoor market.

S N
: ] @ There are many
%Q vegetables at the

fruit stand.

g

Fully connect

>

®)

i
0|

g

state reward action
s; Te a;

"
d
Gl

o

2|~
OfO)O



What is deep learning good at?
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have in common?
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What do many of deep learning’s successes
have in common?

* Vectors
* Grids
* Sequences



But many important domains are richly structured
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The classic deep learning toolkit...

“My data is vectors”: “My data is grids”: “My data is sequences”:
Multi-layer perceptron (MLP) Convolutional neural network (CNN) Recurrent neural network (RNN)
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...Is not well-suited to reasoning over structured representations.

But deep networks that operate on graphs are.

State



Background: Graph Neural Networks

General idea

Analogous to a convolutional network, but over arbitrary graphs (rather than just grids)
Can learn to reason about entities and their relations

Key literature surveys

Scarselli et al. (2009) "The Graph Neural Network Model".
Summarizes the initial papers on the topic from ~2005-2009. Original innovation, general formalism.

Li et al. (2015) “Gated graph sequence neural networks”.

Simplified the formalism, trained via backprop, used RNNs for sharing update steps across time.
Bronstein et al. (2016) “Geometric deep learning: going beyond Euclidean data”.

Survey of spectral and spatial approaches for deep learning on graphs.

Gilmer et al. (2017) “Neural Message Passing for Quantum Chemistry”.
Introduced “message-passing neural network” (MPNNSs) formalism, unifying various approaches such as
graph convolutional networks.

Battaglia et al. (2018). “Relational inductive biases, deep learning, and graph networks”.
Introduced the “graph network” (GN) formalism, extends MPNNs, unifies non-local neural networks/self-
attention/Transformer.




Graph Networks (GNs)

Why do we need another graph neural network variant?
* We designed GNs to be both expressive, and easy to implement
* A GN block is a “graph-to-graph” function approximator
* The output graph’s structure (number of nodes and edge connectivity) matches the input graph’s
* The output graph-, node-, and edge-level attributes will be functions of the input graph’s

(a type of Graph Neural Network)
Battaglia et al., 2018, arXiv
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Message-Passing NN (eg. Interaction Net, GCN)

Non-Local NN (eg. Transformer)
Gilmer et al. 2017

Vaswani et al. 2017; Wang et al. 2017
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Composing GN blocks

The GN’s graph-to-graph interface promotes stacking GN blocks,
passing one GN'’s output to another GN as input

Shared GN core Encode-process-decode Recurrent GN architecture
Go— GN; [ G1—| GNy | =GNy > Gy, GNeore Gt GNeiore Gty
L ) x M x M
GNenc GNdec GNenc GNdec
GO —> GNcore —> G]VI T l T l
x M t +
Ginp Gout Ginp Gg)ut

Battaglia et al., 2018, arXiv



Interaction Network: Learning simulation as message-passing

n-body System
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Interaction Network: Learning simulation as message-passing

Edge function

ei} < ¢e(ek7 Vrkyvsk)

* Compute “message” from
node and edge attributes
associated with an edge

n-body System

“) &3d

{

Message aggregation Node function

~/ E: /
e, < €L

T’kZi
.

V; — ¢U(égavi7 11)

Update node info from
previous node state and
aggregated “messages”

Battaglia et al., 2016, NeurlPS



Interaction Network: Learning simulation as message-passing
n-body System
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Edge function Message aggregation Node function Trained to predict
_ _ body coordinates
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» Compute “message” from e * Update node info from
node and edge attributes previous node state and -
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Battaglia et al., 2016, NeurlPS



Physical systems as graphs

Balls String

Y

Nodes: masses

Nodes: bodies Nodes: balls
Edges: gravitational forces Edges: rigid collisions between Edges: springs and rigid
balls, and walls collisions

Battaglia et al., 2016, NeurlPS



1000-step rollouts of true (top row) vs predicted (bottom row)

n-body Balls String

True

Model

Battaglia et al., 2016, NeurlPS



True

Model

Zero-shot generalisation to larger systems

n-body Balls String

Battaglia et al., 2016, NeurlPS



Interaction Network: Predicting potential energy

n-body System
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* Rather than making node-wise
predictions, node updates can be
used to make global predictions.

mass-spring

Battaglia et al., 2016, NeurlPS



Visual interaction network: Simulate from input images

Multi-frame encoder (conv net-based) Interaction network
XY Coordinates = Relation Net
Channels
Self dynamics
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Input Frames  2-Scale Pooling Output
Convolution Convolution State Code

Watters et al., 2017, NeurlPS



Visual interaction network: Simulate from input images

Mass-springs Bouncing balls

True Model True Model

Can even predict invisible objects, inferred from how they affect visible ones

Watters et al., 2017, NeurlPS



Full “Graph Network” generalizes/extends “Interaction Network”

o Edge block
k For each edge, €, Vs, ,Vy , U,

are passed to an “edge-wise function”:

e < ¢° (ex, Vry, Vg, 1)
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Global block

Across the graph, é’, \7', u ,are
passed to a “global function”:

u' < ¢ (&, V', u)

Edge block Node block Global block




Systems: "DeepMind Control Suite" (Mujoco) & real JACO

Random Control System Trajectories

. 7 k

Pendulum Cartpole Acrobot Swimmer6

¢ <

Cheetah Walker2d

DeepMind Control Suite (Tassa et al., 2018)

JACO Arm




Kinematic tree of the actuated system as a graph

Controllable physical system as a graph:
* Bodies — Nodes
* Joints = Edges

* Global properties

Sanchez-Gonzalez et al., 2018, ICML



Forward model: Multiple systems & zero-shot generalization

Prediction Fixed Multiple Systems (with Cheetah)
(Pendulum)

Single model trained: / /

* Pendulum, Cartpole, Acrobot, Swimmer6
& Cheetah
Expected Predicted

Prediction Fixed SwimmerN (zero—shot prediction)
(Swimmer7)

Zero-shot generalization: Swimmer
* # training links: {3, 4,5,6, -, 8,9, -, -, ...}
* #testing links: {-, -, -, -, 7, -, -, 10-14}

Expected Predicted

Sanchez-Gonzalez et al., 2018, ICML



Forward model: Real JACO data

Recurrent GN
=059

Prediction Fixed Real JACO

Expected Predicted
Sanchez-Gonzalez et al., 2018, ICML



Control: Model-based planning

The GN-based forward model is differentiable, so we can backpropagate through it to
search for a sequence of actions that maximize reward.

Control Fixed JACO
Imitate, full pose (1x)

Target pose Control trajectory

Sanchez-Gonzalez et al., 2018, ICML



Control: Multiple systems via a single model

Control Fixed Multiple Systems

Pendulum Acrobot Cartpole
Balance (3x) Swing up (5x) Balance (3x)

(

Swimmer6 Cheetah
Move towards target (7x) Move forward (5x)

Sanchez-Gonzalez et al., 2018, ICML



Learning to simulate fluids and complex materials

Xt

dp —1

Sanchez-Gonzalez et al., 2020, arXiv/under review



Learning to simulate fluids and complex materials
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Learning to simulate fluids and complex materials

Learned simulator, sg

dy —4
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Sanchez-Gonzalez et al., 2020, arXiv/under review



Learning to simulate fluids and complex materials

Water-3D (14k particles, SPH)

Ground truth Prediction

Sanchez-Gonzalez et al., 2020, arXiv/under review



Learning to simulate fluids and complex materials

Sand-3D (19k particles, MPM)
e

Grounrd\ truth Prediqion

Sanchez-Gonzalez et al., 2020, arXiv/under review



Learning to simulate fluids and complex materials

Goop-3D (19k particles, MPM)

Ground truth Prediction

Sanchez-Gonzalez et al., 2020, arXiv/under review



Learning to simulate fluids and complex materials

Water ramps

Ground truth (4943 parts) Predictions (4943 parts)

L
B

— 1

Sanchez-Gonzalez et al., 2020, arXiv/under review



Learning to simulate fluids and complex materials

Multiple materials, generalization

Simulation Prediction

Sanchez-Gonzalez et al., 2020, arXiv/under review



Learning to simulate fluids and complex materials

BoxBath

Sanchez-Gonzalez et al., 2020, arXiv/under review



Hamiltonian ODE Graph Network
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Hamiltonian ODE Graph Network

t= 0 (Step 0)

Ground truth True Ham. Interaction Net OGN HOGN
(=] (@)
@
i IS 4 @ 4 &) + o + @
-l 1 L L 1 --I 1 1 1 1 --l L L 1 1 1-l L 1 1 L --l 1 1 1

Sanchez-Gonzalez et al., 2019, arXiv/NeurlPS 2019 workshop



Hamiltonian ODE Graph Network

Performance Generalization to untrained time steps
Predictive accuracy Energy accuracy per Predictive accuracy vs test At
pe; mc;del L m;del 102 At = 0.1 @train At in [0.02, 0.2] @train
3.04°¢7 e- LD
5 5 1.4+ model g§ 10!
= 2.5 104 ™ True Ham. 2O ;40
c o = DeltaGN §2
S 201 310 = OGN B & 107 model
= | @ 0.8 o< 102 @ True Ham.
g1 c = HOGN o's 10
a v 0.6 i 5310.3 e DeltaGN
= 1.0+ 5044 oS . e OGN
o oY ov 10
= 0.5 S 0.2 < e HOGN
QC«_) o v10_5||||||||||||||||||
0.0- 0.0- A O B s T T A N« B~ B B B B B B A
822020000 882030000
o o
Time step @test Time step @test

¢ OGN and HOGN used RK4 integrator (we also tested lower order RK integrators)
* We also tested symplectic integrators, and found HOGN has better energy accuracy/conservation

Sanchez-Gonzalez et al., 2019, arXiv/NeurlPS 2019 workshop



Learning symbolic physics with graph networks

Minimize
Dimension

Single timestep

Nodes

Node Pairs

- — — » Messages (e})

Summed
Message

Node
Update

Updated
Nodes

Next timestep

First MLP _ |

(9%

Second MLP
(¢")

e, + ¢°(ex, Vi, Vs, )

H —y Convert to Symbolic Equation
H via Symbolic Regression

Backpropagation
to learn the
simulator

Cranmer et al., 2019, arXiv/NeurlPS 2019 workshop



Learning symbolic physics with graph networks

Experiments
* 2D and 3D n-body (1/r and 1/r2 force laws)

* Mass-spring system 01 ' 01

Results

» After training, message vectors are linear L o0 o1 Loa ) o1
tranSformS Of the true forces First Message Component Second Message Component

* Symbolic regression of the message function’s
formula reveals the analytical form of the true
force laws

Architecture
Interaction network with message vectors
constrained to 2 or 3 dimensions

True Force Component
-1.49f,+0.43f,
<)
o
True Force Component
-0.44f, - 1.50f,
o
=)

Cranmer et al., 2019, arXiv/NeurlPS 2019 workshop



Inferring relations in dot motion
Model: Relation Network - simple GN with no node update)

Trained on mass-spring systems

Input Model True

Late

Santoro et al., 2017, NeurlPS



Inferring relations in dot motion
Model: Relation Network - simple GN with no node update)

Trained on mass-spring systems
Input Model True Generalizes to point-light walkers

Input Model True

Santoro et al., 2017, NeurlPS

Early

Late



Learning deep generative models of chemical graphs

* Generative model defines joint distribution over graph-generating decisions (structure and order).

* Analogous to a decision tree, where decisions are selected by a GNN:
1. Add node? If NO, terminate.
2. If YES, Add edge? If NO, goto (1).
3. If YES, Pick node to add edge to. Goto (2).
 Training optimizes the joint log-likelihood of structure and order, with Monte Carlo integration over
permutations.

Add node (0)? Add edge? Add node (1)? Add edge? Pick node (0) to

(yes/no) (yes/no) (yes/no) (ves/no) add edge (0,1)
® ® ® @ ¢

0,
] I I 1 I @ I 0] —‘

Generation steps

Add edge? Add node (2)? Add edge? Pick node (0) to Add edge?
/ ) | ® (yes/no) | /no) | ge (0.2 | @ (yes/no)
® ® ® ® >
2 ® @ ®

Li et al., 2018, arXiv
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Learning deep generative models of chemical graphs

* GrammarVAE (Kusner et al., 2017) has qualitatively poorer samples from the prior.
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* Our model learns a more accurate model than LSTMs, and can generate more novel molecules.

Arch  Grammar Ordering | N NLL  %valid  %novel
LSTM Graph Fixed 1 22.06 85.16
LSTM Graph Random | O(n!) 63.25 91.44
Graph Graph Fixed 1 20.55 97.52
Graph Graph Random | O(n!) 58.36 95.98

Li et al., 2018, arXiv



PolyGen: Autoregressive generative model of 3D meshes

Nash et al., 2020, arXiv/under review



PolyGen: Autoregressive generative model of 3D meshes

.OBJ file: cube

v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.0000O0O0
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
£f1234
£8765
£ 4378
£f5148
£f5621
£f2673

Nash et al., 2020, arXiv/under review



Prediction

Conditioning

PolyGen: Autoregressive generative model of 3D meshes
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Architecture: Transformer-based

Two phases:
1. Vertex model
2. Face model
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Nash et al., 2020, arXiv/under review
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PolyGen: Autoregressive generative model of 3D meshes

Class-conditional samples
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Table

Nash et al., 2020, arXiv/under review



PolyGen

An Autoregressive Generative Model of 3D Meshes

Class conditional samples

Nash et al., 2020, arXiv/under review




Build Graph Nets in Tensorflow
github.com/deepmind/graph nets

# Provide your own functions to generate graph-structured data.
input_graphs = get_graphs()

# Create the graph network.

graph_net_module = gn.modules.GraphNetwork(
edge_model_fn=lambda: snt.nets.MLP([32, 32]),
node_model_fn=lambda: snt.nets.MLP([32, 32]),
global_model_fn=1lambda: snt.nets.MLP([32, 32]))

# Pass the input graphs to the graph network, and return the output graphs.
output_graphs = graph_net_module(input_graphs)

For GNN libraries in PyTorch, check out:

» pytorch_geometric: github.com/rustyls/pytorch geometric (fora GN analog, see MetalLayer)
» Deep Graph Library: github.com/dmlc/dgl




Build Graph Nets in Tensorflow
github.com/deepmind/graph nets

Message-Passing NN (eg. Interaction Net)
Gilmer et al. 2017
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Zhang et al. 2017
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Non-Local NN (eg. Transformer)
Vaswani et al. 2017; Wang et al. 2017
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Relation Network
' Raposo et al. 2017; Santoro et al. 2017
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Build Graph Nets in Tensorflow

github.com/deepmind/graph nets

IPython Notebook demos

(A” use same archltecture Shortest path: predictions at each message-passing step
True Step 1 Step 4 Step 7 Step 10

Sort: item-to-item connections

Sorting:

True Predicted
Physics: rollout of mass-spring system pinned at ends

Predicting physics: U \\ﬁ

= True
= Predicted

Time 0 Time 8 Time 16 Time 32 Time 48



Conclusions

Graph neural networks: a first-class member of the deep learning toolkit.

Learned message-passing on graphs can capture complex physical knowledge.

“Graph Nets” support learning simulation, as well as other forms of structured
reasoning and decision-making.

Build Graph Nets in Tensorflow: github.com/deepmind/graph nets.
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Discussion: Going beyond everyday scales

Basic concepts Particle Physics
Setting the scale
Instruments 10 ] Observables
1030 -

- 10'26 <
Accelerators = 1022 - SUSY particle? e
LHe,Lep L 418 | ;/l\?\g/;s” ‘
°® &

10 ey .
Prcebeane) [ 1010 - Atom o E )
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SMALL PARTS COMBINE TO FORM LARGER STRUCTURES

(http://www.chem4kids.com/files/atom intro.html)
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