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When did Exotics Searches begin?
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When did Exotics Searches begin?
• Everything was an exotics search for a while
• Back to the beginning:

• Electron, muon discovery, neutrino

• Then a several-decades-long 
phase of search and discovery, 
up to ~late 1960s
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The Quark Model (1964)
• Alongside search and discovery ran efforts to organise

the discovered particles into underlying patterns
• Some false dawns, then the quark model representation
• Based on 3 quarks (up, down, strange)
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The GIM Mechanism (1970)
• (Glashow, Illiopoulos, Maiani)
• Questioned why there were no FCNC

• Several false dawns also (23 predictions for R ratio!)
• GIM mechanism suggested that the facts could be explained if a 

fourth quark existed (no experimental evidence at the time)
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Time of Exploration and Surprises (1970s)
• J/y discovery (November revolution, 

1974)
• SPEAR (e+e- at SLAC), ASG (fixed 

target at Brookhaven)
• Searching higher CoM energies in an 

open-minded way, scanning across 
energies, measuring R ratio

• Not immediately obvious what it was
• Very narrow width implied lifetime 1000x 

longer than other known resonances
• Decay to hadrons suppressed, leaves 

phase space to decay to leptons via EM
• Spectroscopy (two weeks later found y’)

7



S. Farrington, University of Edinburgh

Building up the Standard Model
• Tau discovery (e+e-, 1975)

• b quark

• Gluon (e+e-, PETRA) 1979
8

•b (Upsilon) discovery
(Fermilab fixed 
target) 1977
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And then the bosons were found
• These were searches for particles needed to complete 

the Standard Model (but this was not known for sure!)
• Not “exotics”?
• (The Higgs boson was the last such case, 2012)

• SM particle content was then complete except for top 
quark (1995), tau neutrino (2000), Higgs (2012)
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Z boson (ppbar,1983)
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Exotics Searches post-1980
• LEP/SLC/Tevatron/LHC (as well as non-collider facilities) 

pursued an exotics program over the following decades
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From CDF Proposal (1981): 

• Centauros, lepton and quark substructure, heavy quasi-stable particles
• SUSY not mentioned explicitly  (Dynamic Symmetry Breaking is)
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Supersymmetry
• SUSY stabilises the Higgs mass

• Solves fine tuning
• Provides dark matter candidate 

(lightest supersymmetric particle)
• Searches tend to involve long 

decay-chain signatures, low 
momentum particles, large missing 
energy – multiple signatures

• A useful framework for setting 
limits, even if it does not yield 
discovery
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Exotics Searches post-1980
• LEP/SLC/Tevatron/LHC (as well as non-collider facilities) 

pursued an exotics program over the following decades
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From “Physics at LEP” (1986)

• Precision measurements, toponium, New heavy leptons/quarks, 
technicolour
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Exotics Searches post-1980
• LEP/SLC/Tevatron/LHC (as well as non-collider facilities) 

pursued an exotics program over the following decades
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From ATLAS
Letter of Intent (1992)
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Exotics Searches post-1980
• LEP/SLC/Tevatron/LHC (as well as non-collider facilities) 

pursued an exotics program over the following decades
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From CDF Run II
Technical Design Report (1996)
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And now?
• What do we mean by exotics searches now - why do we 

think that there is still New Physics to find?
• Can safely argue that pre-1980 was a time of great exploration 

but it turns out in retrospect to have all been building towards the 
same conclusion – the Standard Model
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Standard Model Shortcomings
• Standard Model: best-tested theory 

• Describes the fundamental particles
and the interactions among them

• But...
• 26 free parameters (compelling?)
• Higgs mass appears to be unnaturally fine-tuned
• Not possible to unify with gravity
• Dark Matter/Energy
• Effective theory? (c.f. Classical mechanics

è Special Relativity)

• Candidate overarching theories imply
‘New Physics’
• New fundamental particles
• New fundamental interactions among them

16
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Exotics Searches
• Search for those new fundamental particles and 

interactions
• Often those searches are ~targeted at specific candidate 

theories 
• The choice of candidate changes over time

• Archaeology on the proposal documents illustrates an open-
mindedness throughout the decades and an awareness of 
“theoretical biases”

• But much more than that: exploration as a goal in itself
• A full exploitation of the LHC is open-mindedly to ask the 

question “what happens when hadrons collide”
• Model-independence is a good goal

• Signature-based searches
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Model Independence
• An example of good practice:
• Set up a search to be 

sensitive to e.g. WIMPs

• Measure detector-corrected observables e.g. di-jet mass
• These are re-interpretable

• Can still set limits in a model of choice as well:

18

Eur. Phys. J. C 77 (2017) 765
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How to search in practice?
• Prerequisite: Design a detector with sensitivity

• ATLAS is a General Purpose Detector (GPD), as is CMS
• Most of the generic goals serve exotic searches well: measuring 

mass/momentum/charge/energy/lifetime of particles
• Some notable special cases for exotics given some classes of 

models e.g. 
• high momentum muons’ charge identification (motivated by Z’ or W’ 

search)
• Missing energy measurement as a SUSY and Extra Dimensions 

signature (implies “4pi coverage”)
• Low transverse momentum triggers for SUSY decay chains (among 

other “SM” physics
19
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How to search in practice?

• Most of the generic 
goals serve exotic 
searches well: 
measuring 
mass/momentum/charg
e/energy/lifetime of 
particles

20

• ATLAS is a General Purpose Detector (GPD)
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How to search in practice?
• Some notable special design criteria for exotics given 

some classes of models e.g. 

21

• high momentum muons’
charge identification 
(motivated by Z’ or W’ 
search)
• Missing energy 
measurement as a SUSY 
and Extra Dimensions 
signature (implies “4pi 
coverage”)
• Low transverse momentum 
triggers for SUSY decay 
chains (among other “SM” 
physics)
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• Typically search for a mass resonance

• Higher energy       è Access higher mass states
• Higher luminosity  è Access rarer production processes

• This has worked: ...J/y, ϒ, Z, Higgs, ...
• But no evidence for resonances Beyond the Standard Model 

Ruled out phase-space: e.g. mass(Z’è t+t-) is > 2.4 TeV
• This provides legacy constraints and there is a lot of discovery phase space still to 

explore.

O1

O2

New Physics Search: Mass axis
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Mass(O1,O2)
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Z’ searches
• Balance theory/experiment (signature) motivations
• For example, Z’ search
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Phys. Lett. B 796 (2019) 68
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Z’ searches
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Go “exclusive”: Require a b-jet (or veto b)
• Data are subsets of the Z’ search: production with a b 

quark and production with explicitly no b-quark
• Move to exclusive searches could reveal peaks where the 

inclusive distributions do not see them

25JHEP 07 (2019) 117
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ATLAS Exotics reach (so far)
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Precision Measurements as a “search”
• Another way to search is to make precision 

measurements of already-discovered particles
• This happened with W, Z, Higgs, b… you name it
• e.g. W mass
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Eur. Phys. J. C 78 (2018) 110
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The Higgs
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•The Higgs search was not assured to turn up a H(125)
•That search now yields searches

•For rare decays of the H(125)
•While the search for an extended Higgs sector 
continues

•Combined with a move towards precise and differential 
measurements tests the SM

•Ample room for something to turn up, this is the only 
fundamental scalar we know of, explore it.
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• Typically search for a mass resonance

O1

O2

New Physics Search: Mass axis
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Mass(O1,O2)
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Alternative Axis: Lifetime

30

Single LLP production

LLP

LLP = Long Lived 
ParticleO1

O2
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Alternative Axis: Lifetime
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OR 
Double LLP production

O1

LLP invisible

LLP

invisible
O2

Single LLP production

LLP

LLP = Long Lived 
ParticleO1

O2
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Why Long Lived Particles?
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Foresight in CDF proposal in 1981:
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Why Long Lived Particles?
• Familiar case: b-hadrons
• Long-lived because

• GF is small (= W mass is large c.f. Q2)
• Off-diagonal CKM matrix elements 

are small

• New Physics could be long-lived for the same reasons:
• Massive propagators, small couplings
• Lack of phase space 
• Inability to decay by a faster route 

• It makes sense to search for these at the LHC to explore 
the full range of new physics that we can be sensitive to
• It is part of a full exploitation of the LHC, many theories as 

benchmarks
33
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Standard Model Particle Lifetimes
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What else could 
be on this plane?

Prog.Part.Nucl.Phys. 106 (2019) 210-255
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Theory Motivations
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1806.07396

(The short answer is that many theories motivate LLPs, let’s look
at a few examples of how it has been realised so far.)

Simplified 
Models
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Experimental Considerations
• The hardware and software of ATLAS and CMS were 

designed with broad goals in mind 

• But long lived particle sensitivity was not a major design criterion
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How do we detect LLPs at the LHC
• Bespoke reconstruction algorithms layered on top of 

standard ones, dedicated triggers in some cases
• Sensitivity comes from a patchwork of methods
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Current Coverage (ATLAS)

38
0.1      1     10       



S. Farrington, University of Edinburgh

Displaced Jets (Low EM fraction)
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• Look at decays that happen outside the EM calorimeter
• Search motivated by long-lived scalars

• LLP decays in the hadronic calorimeter
• No associated tracks

• Specialised trigger (shape and location of calo deposits)
• Backgrounds

• Jets of neutral hadrons
• Beam-induced backgrounds 

Eur. Phys. J. C 79 (2019) 481
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Displaced Jets (Low EM Fraction)
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Scalar mass 125 GeV Scalar mass 600 GeV
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Current Coverage for LLP to tau
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• Current efforts leave huge unexplored phase space (plot a couple of years 
old but the picture has changed little for taus)

• Special motivations for LLP to tau decays – if new particles mix with Higgs,   
mass-dependent couplings arise

• ERC project on figuring out how we probe the rest of the phase    
space for taus (new hadronic tau ID, new triggers)
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J. Evans & J. Shelton
JHEP 1604 (2016) 056
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Tau ID
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Tau hadronic decays
• BR(th = 65%)

Tau ID
• Tau ID method 

(Boosted Decision Tree) 
• Currently trained on g* tt decaying promptly

Same arguments for hadronic
tau trigger

e/μ

τ+

τ−

υe/μ
υτ

h+

h−
h+ (K/π)

LLP
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Workshop on LLP to 3rd generation
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Aiming at a model independent search for LLP 
decaying to tau
Held a workshop at Higgs Centre for Theoretical 
Physics to identify benchmark theories to target:
https://indico.ph.ed.ac.uk/event/59/timetable/#20191
120

Benchmarks include: Heavy neutral lepton, stau, FIMPs, Higgs 
to aa

https://indico.ph.ed.ac.uk/event/59/timetable/%2320191120


S. Farrington, University of Edinburgh

Outlook
• Run 3 at the LHC and HL-LHC offer:

• Possibly higher energy (13.5 TeV)
• Higher luminosity, and luminosity levelling
• New detector and software components
• Allows smarter trigger decisions

• Also an argument that as the doubling time lengthens, it is profitable to 
use the trigger bandwidth in novel ways

• Huge data rates combined with capacity to record and 
process them, provide us with an unprecedented 
opportunity to open up new phase-spaces

• With well-designed analyses, null searches are still valuable 
in constraining theories (and can be in perpetuity – factor 
out the detectors and be model-independent)

• History tells us to be prepared for surprises, and to be ready 
to find order in the chaos when surprises come along
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Extras
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LLP Link to 125 GeV Higgs
• H(125) could mix with 

“dark sector Higgs”

• Or decay to long-lived 
scalars

• Or to dark fermions

46

(the fermions could be low momentum and 
hard to trigger on.)

Phys.Lett. B651 (2007) 374(379); Phys.Lett. B661 (2008) 263(267)
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Current LHC Coverage: H to e/µ/j
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•Large areas of phase space are being ruled out at the LHC
•But small lifetimes are difficult for the LHC; large lifetimes capped by detector dimensions
•Work is ongoing to maximise the sensitivity across LHC experiments and beyond
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Z’ searches
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ATLAS SUSY reach (so far)
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Current Coverage (CMS)
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• Multi layer perceptron trained to estimate LLP decay 
position

• Per-jet BDT (classify among QCD/signal, beam induced 
background)

• Per-event BDT (eliminate beam induced background)
• ABCD method to calculate remaining QCD background

Displaced Jets (Low EM Fraction)
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Tau Trigger 
To maximise the sensitivity to 
LLP decays to third generation
need to use fully hadronic decay modes

• Trigger currently allows only up to |d0| < 2 (then 4 later in 
run 2) mm
• Train MVA trigger for long-lived taus

Combine new th trigger and ID
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Scalar + b
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