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The top quark

History of the Top Quark Mass

e The top quark is the heaviest known L
fundamental particle E M pos b
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e Discovered in 1995 at the Tevatron by the
CDF and Do experiments
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e It has a mass of ~ 173 GeV. 40 times the
mass of the next heaviest quark!

Top Quark Mass (GeVic?)
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e Similar to that of a

e “Rediscovered” at the LHC in 2010

e Unique amongst the quarks - decays
before hadronisation

e Yukawa coupling of O(1). Some special
relationship with the Higgs?




Top quark pair production

e Top quarks produced most often
in pairs

e Atthe /s =13 TeV around 90% of
tt pairs are produced via gg — tt
and the remaining 10% by qg — tt

e o7 ~ 830 pb (NNLO+NNLL QCD)
—»=2 10 tt pairs /s at a luminosity
of 103%*cm™2 s~

q t

t

Large number of tops allows us to
make precise cross-section
measurements

Many new physics models
enhance the tt cross-section

Large number of tt pairs allows us
to measure tt + X where X can be
H,W,Z,~, bb and possibly one day
even tt



Top quark decay

e The top quark decays nearly 100% of the time to a b-quark and a W-boson
tt — WW~bb

e tt decays are therefore categorised based on how each of the two Ws
decay

Top Pair Decay Channels

e Three main channels

1. All-hadronic 8 |8le
d %)
2. Dilepton z i'g’ B,
. . = +
3. Semi-leptonic 3 =
- B |S[E[T
e The tt final state can include electrons,
muons, taus, neutrinos (not detected) and o & tau+jets
jets (including b-jets). R B 1 muon+jets
. v | © electron+jets
o We need to make use of the entire ATLAS
Vgt Wit ud cs
detector to make measurements! ¥




The ATLAS detector
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b-tagging » JHEP 08 (2018) 89

b-tagging is crucial for top physics

e Exploit large impact parameters,
seconday verticesand b — ¢
decay chains

Information is combined using a
Boosted Decision Tree to identify
jets containing b-hadrons
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https://link.springer.com/article/10.1007/JHEP08(2018)089

NEW: tt cross-section in ey events > ATLAS-CONF-2019-041

e The most accurate tt cross-section measurements have been made in the
ep channel

e This is a very clean channel with only small backgrounds

e “Simple” technique, count the number of b-tagged jets
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o tt cross-section
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-041/

NEW: tt cross-section in ey events > ATLAS-CONF-2019-041

Uncertainty source  Aog/og

(%)
Data statistics  0.44 e Uncertainties are statistical,
ttmod. 0.97 systematic, luminosity and beam
Lept. o0.59 energy
Jet/b 021 e The total uncertainty is dominated
Bkg. 0.78

by the luminosity uncertainty

Analysis systematics  1.39
Integrated luminosity  1.90
Beam energy 0.23

Total uncertainty  2.40

e tt and background modelling are
the next largest



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-041/

NEW: tt cross-section in ey events > ATLAS-CONF-2019-041

Result: ;7 = 826.4 + 3.6 = 11.5 + 15.7 = 1.9 pb (2.4%)

e Analysis has now been performed at 7, 8 and 13 TeV
o All results are consistent with the SM (NNLO+NNLL QCD) prediction
e The measurement is more precise than the prediction!
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-041/

tt+ X

o ATLAS has also measured tt production in association other particles
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The Higgs and the top

e |tis important that we make the
most of the LHC and study the

. . -- H
Higgs as comprehensively as
possible
e The top Yukawa coupling can be ¢

probed through loops but also
directly in Higgs production in -- H
association with top quarks (ttH)

Top Pair Decay Channels

e The ttH process can decay to a
large number of different final
states. The more we measure the

; @f tausiels ] better!

Y muon+jets 4

R Yy e H — bb is the dominant decay -

TR el can we measure ttH(H — bb)?
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ATLAS observed ttH production
last year

Sensitivity comes mainly from the
H — ~~ and multilepton
channels (H — 77 and H — WW™)
H — bb not competitive, despite
large branching ratio

The sensitivity of the ttH(bb)
channel is limited by systematic
uncertainties on the QCD tthb
background

> Phys. Lett. B 784 (2018) 173
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https://linkinghub.elsevier.com/retrieve/pii/S0370269318305732

» Phys. Rev. D 97 (2018) 072016
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e Final state with four b-jets - need to determine
which jets are from H — bb and which are from
t— Wb

e Use MVA techniques to reconstruct the system
and to separate signal from background
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.072016

ttH(bb) uncertainties

Pre-fit impact on p:
[16=8+A8 6=0-08
Post-fit impact on p:
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» Phys. Rev. D 97 (2018) 072016

e k(tt+ >1b)isa
normalization
parameter

e Measure
1.24 + 0.10
(uncertainty
statistical)

e The four uncertainties with the largest impact on the limit are all tth

related

e Abetter understanding of ttbb crucial for this channel to be useful


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.072016

CMS uncertainties » JHEP 03 (2019) 026

CMS 35.9 b7 (13 TeV)
1 1i+bb cross section (50%) ———
2 b tagging: charm (linear) =t
3 1iH cross section (renorm.ffact. scales)
4 jet energy scale (1) ——
5 1T+2b cross section (50%) ———
6 b tagging: If fraction St
7 b tagging: If stats (quadratic)
8 u_sule(i)
[ PS scale: ISR (tf+!f)
10 PS scale: FSR (tf+1f) =
n b tagging: hf fraction e
12 b tagging: charm (quadratic)
13 ME-PS matching (tf+1f)
1 jetenergy scale (2)
15 1, scale ()
16 jetenergy scale (3) —
” POF (gg ttH)
18 b tagging: hf stats (quadratic)
19 jet energy scale (4) —
20  tf cross section (renorm.ffact. scales)
2 A 12 -od 01
~-Pull [l +16 Impact [-16 Impact (6-6,)/A0

CMS result: 4 = 0.72 + 0.24 +0.38 ATLAS result: 4 = 0.79 + 0.29 + 0.53


https://doi.org/10.1007/JHEP03(2019)026

ttbb predictions

e Clearly, an improved understanding of ttbb is need for
searches/measurements of t?H(bB)

e Many other searches have large tthb backgrounds (SUSY, four top
production ...)

e Predicting tthb is challenging

e Massive b-quarks in the matrix element, large scale differences (m; versus
mp)

o NLO predictions of tbb started to arrive about five years ago

e Some surprising results ...



tthb predictions » Phys. Lett. B734 (2014) 210

e The effect of g — bb splitting in
the parton shower is important
(MC@NLO vs. MC@NLO,,)

e The contribution of the right
diagram below is surprisingly large

e NLO ttbb production with massive
b-quarks in the matrix element
using the four flavour scheme

Mass of first two b-jets (ttbb cuts)
!
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e Parton shower effects still
important at NLO

o Cross-section uncertainties range
P = A N U WU R .
© o e a0 mo 3w a0 from 20-40% (depending on
nyp [Ge'
fiducial cuts)



http://doi.org/10.1016/j.physletb.2014.05.040

Measuring tthb

e Experimental input is required to move our understanding of tthb forward

e ATLAS has performed a measurement of t¢ with additional heavy-flavour
jets at 13 TeV, using data collected in 2015 & 2016

e Fiducial cross-sections measured

e We DO NOT attempt to identify which b-jets are from the top quarks and
which are considered “additional”

e The measurement therefore includes “QCD" ttbb, ttH and ttZ

Z/y




Analysis outline

1. Select an inclusive (> 2 b-jets) sample of tt events

2. Categorise simulated tt events based on the "flavours” of the jets in the
event. Use these to create templates from ¢t simulation

3. Fit the templates to data in a discriminating variable

4. From the results of this fit, measure inclusive and differential fiducial
cross-sections

The analysis is performed in two channels

o /+jets

e el



Analysis selection

e Both channels require the ATLAS detector to be fully operational
e A primary vertex with at least two tracks

e Single electron/muon triggers with pr > 20(26) GeV for muons and
pr > 24(26) GeV for electrons in 2015 (2016)

ep
£+jets e 1eand 1 p with pr > 27
o 1/(e/p) with pr > 27 GeV Gev
e > 5jets with pt > 25 GeV, e Q- Q=
In| < 2.5 e > 2jets with pr > 25 GeV,
e > 2 tagged at the 60% Inl <2.5
b-tagging efficiency WP e > 2jets tagged at the 77%
b-tagging efficiency WP

20



Number of b-tags after pre-selection > JHEP 04 (2019) 046
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5 Diboson 3 5 i
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Syst. 4

Data/Pred.
Data/Pred.

2 3 24 2 3 4 =5

b-jets Nb-jets

e After pre-selection there is a slope in the data / MC ratio in the number of
b-jets distribution

e The number of events with > 3 b-jets is under-estimated

e We want to identify the cause of this. Is it due to modelling or an
experimental effect (flavour tagging?)?
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https://link.springer.com/article/10.1007/JHEP04(2019)046

Leading b'jet pT > JHEP 04 (2019) 046

e We can also look at jet variables
e Here we can clearly see the "purity” of the sample we are dealing with

o Non-tt backgrounds are small contributions in both channels
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https://link.springer.com/article/10.1007/JHEP04(2019)046

Discriminating ttb, ttc and tt/ » JHEP 08 (2018) 89

e To discriminate between the various cases, we use the output of the
b-tagging variable

e The output of the b-tagging algorithm is split into five bins, each of which
is calibrated

e The tightest b-tagging working point (5) is 60% efficiency and has a
light(c)-jet rejection rate of ~ 1550(35)

S Ll ey o 10T g
£ [ ATLAS Simulation E 2 E
E [ s=13TeV, i pies 2 RO ATLAS Simulation 1
‘g‘ — - cets _; o \\\ —_—— Lircjhl-fljcwo‘ur jet rejection J
S -~ Light-flavour jets S E \_ T Cietrejection El
w B o £ N 1
<

] =] F ~ R
i % L \\ N

7 T AN
B ! o 0 N E
IIIIIII E = N ]
3 [ N ]
] L N ]

] \

10 \ 4
107 E E El
E E \ B
. 3 L N, ]
JetpT>ZOGeV, Inl<2.5 [ jetp.>20 GeV, [n<2.5 \\ ]

£ ] X , 2
Bl b b b b b b Loy [T P PP PET S PR
-1 08 06 04 02 0 02 04 06 08 055 0.6 065 07 075 08 085 09 095 1

3
MV2c10 BDT output distribution b-jet efficiency

23


https://link.springer.com/article/10.1007/JHEP08(2018)089

In the ex channel the fitis
performed using the b-tagging
discriminant of the jet with the
third largest value of Daive

ttc and tt/ templates are combined

A systematic uncertainty is
included by varying the
normalisation of the ttc template
by +40% before combining with
the ttl template

The best fit value scales the ttb
template by =~ 1.4

eﬂchannel > JHEP 04 (2019) 046
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https://link.springer.com/article/10.1007/JHEP04(2019)046

(+jets channel RJHEES4{(2000)/048

e In the ¢+jets channel there are
always at least four jets and so the
ATLAS | fit is performed using the
byl b-tagging discriminants of the two
ol i =0.962+0.003 g8ing

em180-008 jets with the third and fourth
. largest values of Dyrva

Events

e 2D fit flattened to 1D in the figure

e ttc and tt/ templates are treated
separately

The best fit value scales the tth

£ f ] °
®© 1.2 -7+ Prefit — Post-it |
S e i ) template by ~ 1.1
8 o8 3
Q gt 723 452345345455 e Can see that the final bin in the
4"et 1 1 1112222333445 L. . X . .
b-tag discriminant bin distribution, which is equivalent to

four very tight b-tags, is very pure
in ttb events
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Applying the correction factors > JHEP 04 (2019) 046
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e We can apply these correction factors back to our poorly modelled
distributions

e There is a clear improvement in the agreement between the data and the
prediction
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Applying the correction factors > JHEP 04 (2019) 046
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e We can apply these correction factors back to our poorly modelled
distributions

e There is a clear improvement in the agreement between the data and the
prediction
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ttb fiducial cross-sections > JHEP 04 (2019) 046
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e Using these correction factors we can measure tt + b-jet fiducial cross-sections

e Data here refers to the measured cross-section

e The ttH and ttZ components are subtracted from the results to allow for easy
comparison with QCD ttbb predictions

e Measured fiducial cross-sections generally larger than ttbb predictions by ~ 1o

e Confirms what had been seen in related analyses (ttep, ttH)

e Uncertainties range from 13 - 28 %
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Uncertainties » JHEP 04 (2019) 046

Source Fiducial cross-section phase space
eu £+ jets
>3b > ab >5j,>23b >6j,>4b

unc. [%]  unc. [%] unc. [%] unc. [%]
Data statistics 2.7 9.0 1.7 3.0
Detector+background total syst. 8.5 14 18 12
tt modelling total syst. 10 20 21 12
Total 13 26 28 17

e Largest uncertainties due to b-tagging (mistagging light and c-jets) and tt modelling

e Improving these areas important to understand tt + b-jets in more detail
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Differential measurements > JHEP 04 (2019) 046

e In addition, several differential measurements % 107l ATLAS teptonetschanel |
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e Properties of the bb system (both the leading
two b-jets and the closest two b-jets) e The shapes of distributions
are generally reasonabl
P> M, ARpp B¢ Y Y
described
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Summary and outlook for tthb

e {t + b-jets measured by ATLAS in two channels
e tt + b-jet cross-sections measured to be larger than what is predicted
e Results confirm what has been hinted at in other analyses

¢ No major shape differences seen in distributions

e We have four times more data on disk than has been analysed

e As with other tt measurements, the very clean ex channel will become the
most useful channel

e We need to understand which variables in the ttH(bb) MVA cause large
modelling uncertainties!

e Attempt to assign jets from top decays in next measurement?

e MC improvements are on the way!
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The view from the top

e The top quark may be a window to
new physics
e Testing how it interacts with other

particles, particularly the Higgs, is
important

e The latest tf measurements from
ATLAS are a challenge to theorists!

e The future (and present) of top
cross-section measurements is
differential and associated!!
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