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The top quark

• The top quark is the heaviest known
fundamental particle

• It has a mass of ≈ 173 GeV. 40 times the
mass of the next heaviest quark!
• Similar to that of a gold atom.
• Discovered in 1995 at the Tevatron by the
CDF and D0 experiments

• “Rediscovered” at the LHC in 2010

• Unique amongst the quarks – decays
before hadronisation
• Yukawa coupling of O(1). Some special

relationship with the Higgs?
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Top quark pair production

• Top quarks produced most often
in pairs
• At the

√
s = 13 TeV around 90% of

t̄t pairs are produced via gg → t̄t
and the remaining 10% by qq̄→ t̄t
• σt̄t ≈ 830 pb (NNLO+NNLL QCD)

→≈ 10 t̄t pairs /s at a luminosity
of 10

34
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• Large number of tops allows us to
make precise cross-section
measurements
• Many new physics models
enhance the t̄t cross-section
• Large number of t̄t pairs allows us
to measure t̄t + X where X can be
H,W, Z, γ, bb̄ and possibly one day
even t̄t

3



Top quark decay

• The top quark decays nearly 100% of the time to a b-quark and a W-boson

t̄t→ W+W−bb̄

• t̄t decays are therefore categorised based on how each of the two Ws
decay

• Three main channels
1. All-hadronic

2. Dilepton

3. Semi-leptonic

• The t̄t final state can include electrons,
muons, taus, neutrinos (not detected) and

jets (including b-jets).
• We need to make use of the entire ATLAS
detector to make measurements!
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The ATLAS detector
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b-tagging JHEP 08 (2018) 89

• b-tagging is crucial for top physics
• Exploit large impact parameters,
seconday vertices and b→ c
decay chains
• Information is combined using a

Boosted Decision Tree to identify
jets containing b-hadrons
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NEW: t̄t cross-section in eµ events ATLAS-CONF-2019-041

• The most accurate t̄t cross-section measurements have been made in the
eµ channel
• This is a very clean channel with only small backgrounds
• “Simple” technique, count the number of b-tagged jets

N1 = Lσtt̄εeµ2εb(1− Cbεb) + Nbkg1
N2 = Lσtt̄εeµCbε2b + Nbkg2

L: Integrated luminosity
σtt̄: t̄t cross-section
εeµ: Efficiency for event to have one

electron and one muon (≈ 1%)

εb: Efficiency to tag and select a b-jet
Cb: b-tagging correlation ≈ 1

Nbkg1,2 : Number of background events
with 1/2 b-tags
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NEW: t̄t cross-section in eµ events ATLAS-CONF-2019-041

Uncertainty source ∆σt̄t/σt̄t
(%)

Data statistics 0.44

t̄t mod. 0.97

Lept. 0.59

Jet/b 0.21

Bkg. 0.78

Analysis systematics 1.39

Integrated luminosity 1.90

Beam energy 0.23

Total uncertainty 2.40

• Uncertainties are statistical,
systematic, luminosity and beam

energy

• The total uncertainty is dominated
by the luminosity uncertainty

• t̄t and background modelling are
the next largest
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NEW: t̄t cross-section in eµ events ATLAS-CONF-2019-041

Result: σtt̄ = 826.4± 3.6± 11.5± 15.7± 1.9 pb (2.4%)
• Analysis has now been performed at 7, 8 and 13 TeV
• All results are consistent with the SM (NNLO+NNLL QCD) prediction
• The measurement is more precise than the prediction!
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EB chair: Miriam Watson

Top cross-section convener: TN

mpole
t =

173.1± 1.0(exp.)+1.8
−2.1(theory)

GeV
9

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-041/


t̄t + X

• ATLAS has also measured t̄t production in association other particles
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• t̄t + γ and t̄t + Z give very clean
signals

• Can start to measure differential
distributions

• t̄tW more challenging
• Searches for t̄tt̄t ongoing, but will
likely need more data for evidence
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The Higgs and the top

• It is important that we make the

most of the LHC and study the

Higgs as comprehensively as

possible

• The top Yukawa coupling can be
probed through loops but also

directly in Higgs production in

association with top quarks (t̄tH)
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• The t̄tH process can decay to a
large number of different final

states. The more we measure the

better!

• H→ bb̄ is the dominant decay –
can we measure t̄tH(H→ bb̄)?
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t̄tH Phys. Lett. B 784 (2018) 173

• ATLAS observed t̄tH production
last year

• Sensitivity comes mainly from the
H→ γγ andmultilepton
channels (H→ ττ and H→ WW∗

)

• H→ bb̄ not competitive, despite
large branching ratio

• The sensitivity of the t̄tH(bb̄)

channel is limited by systematic

uncertainties on the QCD t̄tbb̄
background

SM
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σ/
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σ
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Total Stat. Syst. SMATLAS

­1 = 13 TeV, 36.1 ­ 79.8 fbs

             Total       Stat.    Syst.

Combined   )
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  ± 0.18 , ±   ( 0.26
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H (ZZ)tt < 1.77 at 68% CL
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0.23  ±  , 0.38

0.42  ±   ( 0.42
0.48  ±  1.39 

H (multilepton)tt   )0.27
0.30  ±  , 0.29

0.30  ±   ( 0.40
0.42  ±  1.56 

)bH (btt  0.53 )±  , 0.28
0.29  ±   ( 0.60

0.61  ±  0.79 
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t̄tH(bb) Phys. Rev. D 97 (2018) 072016

Classification BDT output
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t̄tH(bb̄) uncertainties Phys. Rev. D 97 (2018) 072016

θ∆)/0θ-θ(
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: soft-term resolutionmiss
TE
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3b normalization≥1b: tt+≥tt+

H: cross section (QCD scale)tt

Jet energy resolution: NP I
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• k(t̄t+ ≥ 1b) is a

normalization

parameter

• Measure
1.24± 0.10

(uncertainty

statistical)

• The four uncertainties with the largest impact on the limit are all t̄tb
related

• A better understanding of t̄tbb̄ crucial for this channel to be useful
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CMS uncertainties JHEP 03 (2019) 026

CMS result: µ = 0.72± 0.24± 0.38 ATLAS result: µ = 0.79± 0.29± 0.53
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t̄tbb̄ predictions

• Clearly, an improved understanding of t̄tbb̄ is need for
searches/measurements of t̄tH(bb̄)
• Many other searches have large t̄tbb̄ backgrounds (SUSY, four top
production . . . )

• Predicting t̄tbb̄ is challenging
• Massive b-quarks in the matrix element, large scale differences (mt versus

mb)

• NLO predictions of t̄tbb̄ started to arrive about five years ago
• Some surprising results . . .
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t̄tbb̄ predictions Phys. Lett. B734 (2014) 210

• NLO t̄tbb̄ production with massive
b-quarks in the matrix element
using the four flavour schemeF. Cascioli et al. / Physics Letters B 734 (2014) 210–214 213

Fig. 2. Transverse momentum of the first light jet and invariant mass of the first two b-jets with standard ttbb cuts. The MC@NLO bands display the combination in quadrature 
of µR, µF and µQ scale variations. The MC@NLO2b curve is obtained by switching off g → bb̄ splittings in the parton shower.

Fig. 3. Transverse momentum of the first b-jet and !R separation of the first two b-jets with standard ttbb cuts and Mbb > 100 GeV. The MC@NLO bands display the 
combination in quadrature of µR, µF and µQ scale variations. The MC@NLO2b curve is obtained by switching off g → bb̄ splittings in the parton shower.

hancement in the Higgs-signal region. The unambiguous MC@NLO/
NLO peaks that appear in the distributions, both in the transverse 
momentum of the first b-jet (Fig. 3a) and in the !R separation of 
the first two b-jets (Fig. 3b), show that the MC@NLO enhancement 
is dominated by back-to-back b-jets with the smallest possible pT

that is needed to reach mbb = 100 GeV. This is consistent with 
the expected behaviour of double g → bb̄ splitting contributions in 
Fig. 1b, where emissions at small-pT are doubly enhanced by soft 
and collinear singularities associated with the parent gluons. Also 
this interpretation is fully confirmed by the fact that MC@NLO-
induced shape distortions in Fig. 3 disappear almost completely 
when g → bb̄ shower splittings are switched off.

To exclude the possibility that double splittings in our simula-
tion are artificially enhanced by a too high choice of the resum-
mation scale, we checked that the characteristic “double-splitting” 
enhancement in the mbb̄ distribution of Fig. 2 is present also in 
simulations based on merged LO matrix elements for tt̄ plus multi-
jet production. In this framework, tt̄bb̄ events are not showered 
with a global resummation scale, but starting from a scale that 
is determined according to the most likely shower history of the 
event at hand. Comparing the shape of the MC@NLO distribution 
of Fig. 2 against MEPS@LO simulations [32] of tt̄+ ≤ 3 j with mas-
sive b-quarks, we found good agreement for merging scales around 
15 GeV, i.e. for the case where most of the phase space associated 

• The effect of g → bb̄ splitting in
the parton shower is important

(MC@NLO vs. MC@NLO2b)

• The contribution of the right
diagram below is surprisingly large

• Parton shower effects still
important at NLO

• Cross-section uncertainties range
from 20-40% (depending on

fiducial cuts)
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Measuring t̄tbb̄

• Experimental input is required to move our understanding of t̄tbb̄ forward
• ATLAS has performed a measurement of t̄t with additional heavy-flavour
jets at 13 TeV, using data collected in 2015 & 2016

• Fiducial cross-sections measured

• We DO NOT attempt to identify which b-jets are from the top quarks and
which are considered “additional”

• The measurement therefore includes “QCD” t̄tbb̄, t̄tH and t̄tZ

H Z/γ
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Analysis outline

1. Select an inclusive (≥ 2 b-jets) sample of t̄t events
2. Categorise simulated t̄t events based on the ”flavours” of the jets in the
event. Use these to create templates from t̄t simulation

3. Fit the templates to data in a discriminating variable

4. From the results of this fit, measure inclusive and differential fiducial

cross-sections

The analysis is performed in two channels

• `+jets

• eµ
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Analysis selection

• Both channels require the ATLAS detector to be fully operational

• A primary vertex with at least two tracks

• Single electron/muon triggers with pT > 20(26) GeV for muons and

pT > 24(26) GeV for electrons in 2015 (2016)

`+jets
• 1 `(e/µ) with pT > 27 GeV

• ≥ 5 jets with pT > 25 GeV,

|η| < 2.5

• ≥ 2 tagged at the 60%

b-tagging efficiency WP

eµ

• 1 e and 1 µ with pT > 27

GeV

• Qe · Qµ = −1

• ≥ 2 jets with pT > 25 GeV,

|η| < 2.5

• ≥ 2 jets tagged at the 77%

b-tagging efficiency WP

20



Number of b-tags after pre-selection JHEP 04 (2019) 046
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N

• After pre-selection there is a slope in the data / MC ratio in the number of
b-jets distribution
• The number of events with ≥ 3 b-jets is under-estimated
• We want to identify the cause of this. Is it due to modelling or an
experimental effect (flavour tagging?)?
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Leading b-jet pT JHEP 04 (2019) 046

• We can also look at jet variables

• Here we can clearly see the ”purity” of the sample we are dealing with

• Non-t̄t backgrounds are small contributions in both channels
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Discriminating t̄tb, t̄tc and t̄tl JHEP 08 (2018) 89

• To discriminate between the various cases, we use the output of the
b-tagging variable
• The output of the b-tagging algorithm is split into five bins, each of which
is calibrated

• The tightest b-tagging working point (5) is 60% efficiency and has a
light(c)-jet rejection rate of ≈ 1550(35)
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eµ channel JHEP 04 (2019) 046

• In the eµ channel the fit is
performed using the b-tagging
discriminant of the jet with the

third largest value of DMV2

• t̄tc and t̄tl templates are combined
• A systematic uncertainty is
included by varying the

normalisation of the t̄tc template
by ±40% before combining with

the t̄tl template
• The best fit value scales the t̄tb
template by ≈ 1.4
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`+jets channel JHEP 04 (2019) 046
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• In the `+jets channel there are

always at least four jets and so the

fit is performed using the

b-tagging discriminants of the two
jets with the third and fourth

largest values of DMV2

• 2D fit flattened to 1D in the figure

• t̄tc and t̄tl templates are treated
separately

• The best fit value scales the t̄tb
template by ≈ 1.1

• Can see that the final bin in the
distribution, which is equivalent to

four very tight b-tags, is very pure
in t̄tb events
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• We can apply these correction factors back to our poorly modelled
distributions

• There is a clear improvement in the agreement between the data and the
prediction
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• We can apply these correction factors back to our poorly modelled
distributions

• There is a clear improvement in the agreement between the data and the
prediction
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t̄tb fiducial cross-sections JHEP 04 (2019) 046
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• Using these correction factors we can measure t̄t + b-jet fiducial cross-sections
• Data here refers to the measured cross-section
• The t̄tH and t̄tZ components are subtracted from the results to allow for easy
comparison with QCD t̄tbb̄ predictions

• Measured fiducial cross-sections generally larger than t̄tbb̄ predictions by≈ 1σ

• Confirms what had been seen in related analyses (t̄teµ, t̄tH)
• Uncertainties range from 13 – 28 %
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Uncertainties JHEP 04 (2019) 046

Source Fiducial cross-section phase space

eµ `+ jets

≥ 3b ≥ 4b ≥ 5j,≥ 3b ≥ 6j,≥ 4b
unc. [%] unc. [%] unc. [%] unc. [%]

Data statistics 2.7 9.0 1.7 3.0

Detector+background total syst. 8.5 14 18 12

t̄t modelling total syst. 10 20 21 12

Total 13 26 28 17

• Largest uncertainties due to b-tagging (mistagging light and c-jets) and t̄t modelling
• Improving these areas important to understand t̄t + b-jets in more detail
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Differential measurements JHEP 04 (2019) 046

• In addition, several differential measurements

are made

• Use 3 b-jets in the eµ channel and 4 b-jets in the
`+jets channel

• “Simple” variables are chosen

• Nb−jets in the eµ channel
• The b-jet pTs

pb,1T , pb,2T , pb,3T , pb,4T

• The scalar sum of jet pT and lepton pT (used in
t̄tH(bb̄)MVAs)

Hjets
T =

∑∑∑
i∈jets

piT, HT = Hjets
T + p`T

• Properties of the bb system (both the leading
two b-jets and the closest two b-jets)
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• The shapes of distributions
are generally reasonably

described
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Summary and outlook for t̄tbb̄

• t̄t + b-jets measured by ATLAS in two channels
• t̄t + b-jet cross-sections measured to be larger than what is predicted
• Results confirm what has been hinted at in other analyses
• No major shape differences seen in distributions

• We have four times more data on disk than has been analysed
• As with other t̄t measurements, the very clean eµ channel will become the
most useful channel

• We need to understand which variables in the t̄tH(bb̄)MVA cause large

modelling uncertainties!

• Attempt to assign jets from top decays in next measurement?

• MC improvements are on the way!
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The view from the top

• The top quark may be a window to
new physics

• Testing how it interacts with other
particles, particularly the Higgs, is

important

• The latest t̄t measurements from
ATLAS are a challenge to theorists!

• The future (and present) of top
cross-section measurements is

differential and associated!!
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