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Standard Model Higgs potential

V(¢)
0‘
0 v V l
) V(¢) has a minimum at @ Behaviour very sensitive

@ A vacuum at ¢ # v incompatible with observations

New physics needed to stabilize the vacuum? |

Markkanen Higgs Stability



Current status

Figure : Degrassi et al. (2013)
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@ Metastable at 99% CL [1]
e Lifetime much longer than 13.8 - 10° years

@ |s this also true for the early Universe ?

[1] Buttazzo et al. (2013); Spencer-Smith (2014); Bednyakov, Kniehl, Pikelner, & Veretin
(2015)
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Inflation and the Standard Model

@ We assume the SM to be valid at high energies
e Potential peaks at A

@ Assuming also an early stage of exponential cosmological
expansion (inflation) with a scale H
o Important if Ay, S H
e State of the art calculations [2]: Ay ~ 10''GeV

V(¢)
¢ BICEP2/Keck/Planck
Voo, H < 10%Gev
0 BICEP2:
Amax < H

v A max
[2] Degrazzi et. al.(2013); Buttazzo et. al. (2013)
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e Higgs stability during inflation (QFT in Minkowski)
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Higgs stability during inflation

@ Inflation induces fluctuations to the Higgs field A¢ ~ H
@ Fluctuations may be treated as stochastic variables [3]
= We can assign a probability density P(¢) to ¢
@ The essential input for P(¢) is Veg(¢), the effective potential

[3] Starobinsky (1986); Starobinsky & Yokoyama (1994)
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1-loop Effective potential

@ Derivation of V.(¢) is a standard calculation [4]
@ A theory with a massive self-interacting scalar field
1 A
Veri(¢) = 3m*¢” + 16*

2

— —
classical

effective mass
4 2
o () 3] o+

2 2
quantum

—+

@ . is the renormalization scale
@ Similarly one may derive the potential for the SM Higgs

[4] Coleman & Weinberg (1972)
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Effective potential for the SM Higgs )

> 2
Veit(¢) = —%m%z + %qub“ +) 6:;2M§‘(¢) [log M;ﬁ) — ci]
i=1

MP(0) = Ki¢? — K]

d || i n K Ki ¢
WE 1 6 g*/4 0 5/6
222 3 (&+g%H)/4 0 5/6
t|3-12 /2 0 32
o |4 1 3\ m*>  3/2
xi|l35 3 A m*  3/2

@ Explicit 4 dependence?
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Callan-Symanzik equation for massless \¢* theory

@ The effective potential is renormalized at a scale
A= AR+, 00— (14+02)¢

@ However, the physical result must not depend on p
@ We can impose this by demanding

d

a5 Veit(¢) = 0

@ This can be used to improve the perturbative result
@ Leads to running parameters, e.g. A(u)
@ Same can be done for the SM
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SM running (1-loop)
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@ For large ¢, the potential is dominated by the quartic term

Aot
v(g) ~ Mg
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Scale independence Vg

@ One can easily show that for the SM to 1-loop [5]
d o 2
@Veff =04 O(h")

@ We must choose 1 to make the higher order terms as small
as possible [6]

The optimal choice

p~ @
= No large logarithms

@ Now we have a well-defined potential with no unknown
parameters!

[5] Casas et. al. (1994)
[6] Ford et. al. (1993)
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Generalization to curved space

<2->
@ ltis possible to include (classical) gravity in the quantum
calculation, R = 12H?

= The SM includes a non-minimal ¢-term, ~ £R¢?

e Always generated by running in curved space
e Virtually unbounded by the LHC, &ew < 10% [7]

@ Curvature induces running of the constants [8]
@ Leading potential contributions:

Flat space, ¢ > m Curved space, H > ¢ > m
A
Ver(e) ~ 20 Ver(o) = M g 1 S0 2

[7] Atkins & Calmet (2012)
[8] Zurek, Kearney & Yoo (2015); TM (2014)
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1-loop Effective potential in curved space

Ver(6,R) = —3m ()60 + SEDRG() + TADS(0*
|

| M (1) 20N N2 1 g
+Z64 5 M; |: 200 — ¢ sM; (1) = kid(t)” — ki + OiR

| i n K Kl 0; ci
1 2 /4 0 1/12  3)2
w2 6 £/4 0 —1/6  5/6
3 -2 g /4 0 —-1/6 3/2
4 1 (F+gHH4 0 1/12 32
Z2|5 3 (&+g%)/40 —1/6  5/6
6 -1 (&8+g%)/4 0 —1/6 32
t || 7-12 y2/2 0 1/12  3)2
o8 1 3\ m £—1/6 3/2
xill9 3 p) m> £—1/6 3/2
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Stability (Flat)

-2107%t ]
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@ Forlarge H (~ 103Ay.x), the SM is not stable [9]
@ Coupling the Higgs to an inflaton ~ ®2¢? = stable [10]

How does including curvature change this? J

[9] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014);
Enqvist, Meriniemi & Nurmi (2014); Zurek, Kearney & Yoo (2015)
[10] Lebedev (2012); Lebedev & Westphal (2013)
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Stability (curved) |

o First attempt, set ew=0and H ~ 10%Apay

V() ~ 2 g 4 g2

4
max
o

Verr(d) / A

0.0 0.5 1.0 15
¢ / Kmax

@ For large H one has A\(y) < 0, since ;> = ¢*> + R
@ ¢ Can become positive or negative depending on ew
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Stability results (curved space)

@ For large H one has A(y) < 0, since ;> = ¢*> + R
@ ¢ Can become positive or negative depending on gw
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Stability results (curved space) Il

@ Now choosing &gw = 0.1 [11]

610%F c e e e T P N CLCELEEEE
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@ Vpax(curved) >> Viux(flat) (and at a higher scale)

P ~ exp[ — 8% (Vmax/3H*)] = Stable! J

[11] Espinosa, Giudice & Riotto (2008)
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Stability results (curved space) IV

@ The (in)stability of the potential is determined by &gy

10

Epw 107"
1072

1073

L 1/4
Vil ~ H

II: Instability
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e Higgs stability after inflation
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inflation probably
happened sometime
‘ here
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@ Equation of state w = p/p changes, winr = —1 — Wrep

@ Energy of inflation is transferred to SM degrees of
freedom, which (eventually) thermalize T = 0 — Tien

@ The crucial moment is right after inflation, but before
thermalization

@ A very complicated and dynamical process [12]
e Reheating < Preheating

@ The Higgs always feels the dynamics of
reheating

(even without a direct coupling to the inflaton)

[12] Kofman, Linde & Starobinsky (1997)
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Reheating

@ During reheating the inflaton oscillates (p = wp)

e=1

e=1

@ The inflaton influences the Higgs via gravity

= New stability constraints ! l

@ Two effects:

e A rapid drop in w, on average
e Oscillations in the complete solution

Markkanen
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Oscillating mass (example)

@ For example for a coupling Ly o< g®2¢?

Oscillating mass for Higgs

mfi m2g ~ g®F cos® (1 Ming)

0

@ Parametric resonance via the Mathieu equation

d*f (2)
dz?

+ [Ak —2q cos(2z)}f(z) =0, Z =t Mins

= Exponential amplification
e May result in a very large fluctuation [13]

[13] Kofman, Linde & Starobinsky (1997)
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Oscillating R

@ The curvature oscillates during reheating

1 1 dd\ >
Guw=-—Tw = R=— |4Vi(®)—
My M} it (P) (dt)

Curvature mass &R
oscillates to negative
values

@ Tachyonic resonance [14]
@ Oscillations of R via ¢ provide efficient reheating
e Geometric reheating [15]

[14] Kofman, Dufaux, Felder, Peloso & Podolsky (2006)
[15] Bassett & Liberati (1997)
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Fluctuations from parametric resonance

@ Resonance may give large fluctuations,
= Instabilities ?!

@ After one oscillation

NG|

Superhorizon modes, k < aH

@ Potentially a huge
H\?exp {VE} effect, A¢ > A,
27 VE

= A¢2~(

@ However, the resonance may be shut off by backreaction

Self-interactions

MN@?) < €R, i A>0 Phiges < 3MAH
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Stability results, reheating
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= ForH > A; ~ 10"'GeV, ¢ is constrained to be ~ 1/6 J
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@ cConclusions
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Conclusions

@ For alarge H, curvature significantly effects the early
universe SM instability

e Running of couplings from H
e A curvature mass x R’ is always generated

@ Stability during inflation and reheating constrains SM
physics, namely for large H

(Thank You! )
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