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Standard Model Higgs potential

0 v

0

V(ϕ)

V(φ) has a minimum at
φ = v

v

0

V(ϕ)

Behaviour very sensitive
to Mh and Mt

A vacuum at φ 6= v incompatible with observations

New physics needed to stabilize the vacuum?
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Current status
Figure : Degrassi et al. (2013)
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Stability

Meta-stability

Meta stable at 99% CL [1]
Lifetime much longer than 13.8 · 109 years

Is this also true for the early Universe ?
[1] Buttazzo et al. (2013); Spencer-Smith (2014); Bednyakov, Kniehl, Pikelner, & Veretin
(2015)
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Inflation and the Standard Model

We assume the SM to be valid at high energies
Potential peaks at Λmax

Assuming also an early stage of exponential cosmological
expansion (inflation) with a scale H

Important if Λmax . H
State of the art calculations [2]: Λmax ∼ 1011GeV

v L max

0

Vmax

VHΦL
BICEP2/Keck/Planck

H . 1014GeV

BICEP2:
Λmax � H

[2] Degrazzi et. al.(2013); Buttazzo et. al. (2013)
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Higgs stability during inflation

Inflation induces fluctuations to the Higgs field ∆φ ∼ H

Fluctuations may be treated as stochastic variables [3]

⇒ We can assign a probability density P(φ) to φ
The essential input for P(φ) is V̄eff(φ), the effective potential

[3] Starobinsky (1986); Starobinsky & Yokoyama (1994)
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1-loop Effective potential

Derivation of Veff(φ) is a standard calculation [4]

A theory with a massive self-interacting scalar field

Veff(φ) =
1
2

m2φ2 +
λ

4!
φ4︸ ︷︷ ︸

classical

+
M(φ)4

64π2

[
log

effective mass︷ ︸︸ ︷(
M(φ)2

µ2

)
−3

2

]
︸ ︷︷ ︸

quantum

; M(φ)2 = m2 +
λ

2
φ2

µ is the renormalization scale
Similarly one may derive the potential for the SM Higgs

[4] Coleman & Weinberg (1972)
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Effective potential for the SM Higgs

Veff(φ) = −1
2

m2φ2 +
1
4
λφ4 +

5∑
i=1

ni

64π2 M4
i (φ)

[
log

M2
i (φ)

µ2 − ci

]
; M2

i (φ) = κiφ
2 − κ′i

Φ i ni κi κ′i ci

W± 1 6 g2/4 0 5/6

Z0 2 3 (g2 + g′2)/4 0 5/6

t 3−12 y2
t /2 0 3/2

φ 4 1 3λ m2 3/2

χi 5 3 λ m2 3/2

Explicit µ dependence?
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Callan-Symanzik equation for massless λφ4 theory

The effective potential is renormalized at a scale µ
λ0 → λR + δλ, φ→ (1 + δZ)φ

However, the physical result must not depend on µ
We can impose this by demanding

d
dµ

Veff(φ) = 0

This can be used to improve the perturbative result
Leads to running parameters, e.g. λ(µ)

Same can be done for the SM

Markkanen Higgs Stability 10 / 29



SM running (1-loop)
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For large φ, the potential is dominated by the quartic term
λφ4

V(φ) ∼ λ(µ)

4
φ4
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Scale independence Veff

One can easily show that for the SM to 1-loop [5]

d
dµ

V̄eff = 0 +O(~2)

We must choose µ to make the higher order terms as small
as possible [6]

The optimal choice
µ ∼ φ

⇒ No large logarithms

Now we have a well-defined potential with no unknown
parameters!

[5] Casas et. al. (1994)
[6] Ford et. al. (1993)
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Generalization to curved space

<2->
It is possible to include (classical) gravity in the quantum
calculation, R = 12H2

⇒ The SM includes a non-minimal ξ-term, ∼ ξRφ2

Always generated by running in curved space
Virtually unbounded by the LHC, ξEW < 1015 [7]

Curvature induces running of the constants [8]

Leading potential contributions:

Flat space, φ� m

Veff(φ) ≈ λ(φ)

4
φ4

Curved space, H � φ� m

Veff(φ) ≈ λ(H)

4
φ4 +

ξ(H)

2
Rφ2

[7] Atkins & Calmet (2012)
[8] Zurek, Kearney & Yoo (2015); TM (2014)
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1-loop Effective potential in curved space

Veff(φ,R) = −1
2

m2(t)φ(t)2 +
1
2
ξ(t)Rφ(t)2 +

1
4
λ(t)φ(t)4

+
9∑

i=1

ni

64π2 M4
i (t)

[
log

∣∣M2
i (t)
∣∣

µ2(t)
− ci

]
; M2

i (t) = κiφ(t)2 − κ′i + θiR

Φ i ni κi κ′i θi ci

1 2 g2/4 0 1/12 3/2

W± 2 6 g2/4 0 −1/6 5/6

3 −2 g2/4 0 −1/6 3/2

4 1 (g2 + g′2)/4 0 1/12 3/2

Z0 5 3 (g2 + g′2)/4 0 −1/6 5/6

6 −1 (g2 + g′2)/4 0 −1/6 3/2

t 7 −12 y2
t /2 0 1/12 3/2

φ 8 1 3λ m2 ξ − 1/6 3/2

χi 9 3 λ m2 ξ − 1/6 3/2
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Stability (Flat)
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For large H (∼ 103Λmax), the SM is not stable [9]
Coupling the Higgs to an inflaton ∼ Φ2φ2 ⇒ stable [10]

How does including curvature change this?

[9] Kobakhidze & Spencer-Smith (2014); Hook et. al. (2014); Fairbairn & Hogan (2014);
Enqvist, Meriniemi & Nurmi (2014); Zurek, Kearney & Yoo (2015)
[10] Lebedev (2012); Lebedev & Westphal (2013)
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Stability (curved) I

First attempt, set ξEW= 0 and H ∼ 103Λmax

Veff(φ) ≈ λ(µ)

4
φ4 +

ξ(µ)

2
Rφ2
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For large H one has λ(µ) < 0, since µ2 = φ2 + R
ξ Can become positive or negative depending on ξEW
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Stability results (curved space) II

For large H one has λ(µ) < 0, since µ2 = φ2 + R

ξ Can become positive or negative depending on ξEW
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Stability results (curved space) III

Now choosing ξEW = 0.1 [11]

0 500 1000 1500

-2×10
9

0

2×10
9

4×10
9

6×10
9

Φ � Lmax

V
ef

fH
Φ
L
�
L

m
ax4

Vmax(curved)� Vmax(flat) (and at a higher scale)

P ∼ exp
[
− 8π2 (Vmax/3H4)

]
⇒ Stable!

[11] Espinosa, Giudice & Riotto (2008)
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Stability results (curved space) IV

The (in)stability of the potential is determined by ξEW
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Reheating

Equation of state w = p/ρ changes, winf = −1→ wreh

Energy of inflation is transferred to SM degrees of
freedom, which (eventually) thermalize T = 0→ Treh

The crucial moment is right after inflation, but before
thermalization

A very complicated and dynamical process [12]
Reheating⇔ Preheating

The Higgs always feels the dynamics of
reheating

(even without a direct coupling to the inflaton)

[12] Kofman, Linde & Starobinsky (1997)
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Reheating

During reheating the inflaton oscillates (p = wρ)

ϵ  1

Φ

ϵ  1

w  -1

wreh

The inflaton influences the Higgs via gravity

⇒ New stability constraints !

Two effects:
A rapid drop in w, on average
Oscillations in the complete solution
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Oscillating mass (example)

For example for a coupling Lint ∝ gΦ2φ2

0

meff
2

Oscillating mass for Higgs

m2
eff ∼ gΦ2

0 cos2(t Minf)

Parametric resonance via the Mathieu equation

d2f (z)
dz2 +

[
Ak − 2q cos(2z)

]
f (z) = 0, z = t Minf

⇒ Exponential amplification
May result in a very large fluctuation [13]

[13] Kofman, Linde & Starobinsky (1997)
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Oscillating R

The curvature oscillates during reheating

Gµν =
1

M2
pl

Tµν ⇒ R =
1

M2
pl

[
4Vinf(Φ)−

(
dΦ

dt

)2
]

0

R

Curvature mass ξR
oscillates to negative
values

Tachyonic resonance [14]
Oscillations of R via ξ provide efficient reheating

Geometric reheating [15]

[14] Kofman, Dufaux, Felder, Peloso & Podolsky (2006)
[15] Bassett & Liberati (1997)
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Fluctuations from parametric resonance

Resonance may give large fluctuations,
⇒ Instabilities ?!

After one oscillation

n ∼ exp
{√

ξ
}

Superhorizon modes, k < aH

⇒ ∆φ2 ∼
(

H
2π

)2 exp
{√

ξ
}

√
ξ

Potentially a huge
effect, ∆φ� ΛI

However, the resonance may be shut off by backreaction

Self-interactions

λ〈φ̂2〉 � ξR, if λ > 0

Gravity

ρHiggs � 3M2
plH

2

Markkanen Higgs Stability 26 / 29



Stability results, reheating
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⇒ For H & ΛI ∼ 1011GeV, ξ is constrained to be ∼ 1/6
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Conclusions
For a large H, curvature significantly effects the early
universe SM instability

Running of couplings from H
A curvature mass ∝ ξRφ2 is always generated

Stability during inflation and reheating constrains SM
physics, namely for large H

ξ ∼ 1/6

Thank You!
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