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The Large Hadron Collider and the Higgs boson

LHC: proton-proton collider

CME 7...8...13TeV
Taking data since 2010

4 experiments ATLAS, ALICE, CMS,
LHCb

Phys. Rev. Lett. 114 (2015) 191803

I Discovery of a Higgs boson
(2012) at CMS & ATLAS

I Sparked investigation of the
nature of electroweak symmetry
breaking ⇒ far from completed!
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Open questions and the physics landscape

Open Questions

I Dark Matter
I Dark Energy
I Origin of baryon asymmetry
I Origin of neutrino masses

I Why are we not seeing new physics around the
TeV scale?
I mass scale beyond LHC reach?
I mass scale within LHC reach, but final states

are elusive?
I Need for

⇒ precision measurements
⇒ sensitivity to elusive signatures
⇒ extended energy/mass reach

New probe: the Higgs boson

I experimental results leave room for wide range of BSM
EWSB scenarios

I still open aspects, including
I Higgs couplings to lighter particles
I Higgs self-coupling → shape of potential
I possible other particles coupled to the Higgs V = −µ2φ†φ+ λ(φ†φ)2
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Proposed electron-positron colliders at the energy
frontier

Linear e+e− colliders

I Compact Linear Collider CLIC

CERN√
s = 380GeV, 1.5TeV, 3TeV

` =11 km, 29 km, 50 km

I International Linear Collider ILC

Japan√
s =250GeV (500GeV, 1TeV)

` =17 km (31 km, 50 km)

Circular e+e− colliders

I Future Circular Collider FCC-ee

CERN√
s = 90− 350GeV

` = 98 km

I Circular Electron Positron Collider

China√
s = 90− 240GeV

` = 100 km
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Planned timeline of LHC, HL-LHC

HL-LHC physics program

I Search for physics beyond the SM
I Continuation of top, Higgs, electroweak physics program of the LHC
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Electron-positron vs. hadron collider

Proton-proton collider

I Proton is compound object
I Initial state unknown
I Limited achievable precision

I High rates of QCD backgrounds
I Complex triggers
I High levels of radiation

I High-energy circular colliders possible

Electron-positron collider

I e+, e− are elementary
I Initial state well-defined (

√
s,

polarization)
I High-precision measurements

I Clean experimental environment
I Less/ no need for triggers
I Lower radiation levels

I High energies (
√

s > 350GeV) require
linear colliders
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Interesting physics processes in pp and ee collisions

Proton-proton collider
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Interesting events suppressed by & 8 orders
of magnitude

Electron-positron collider

http://clicdp.web.cern.ch/sites/clicdp.web.cern.ch/files/

CCcli3_09_16.jpg

More “clean”, all events usable
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Circular and linear colliders

Circular colliders

I Beam circulates for a long time
I Few accelerating cavities, many magnets
I High energy → need strong magnets
I Synchrotron radiation ∼ E4

m4r

Linear colliders

I Beam passes only once
I Few magnets, many accelerating cavities
I High energy → need high accelerating gradient
I High luminosity → high beam power (high bunch repetition)
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Electron-positron colliders

Circular e+e− colliders

I Energy limited by synchrotron radiation
I Large luminosity at lower energies
I Luminosity decreases with energy

Linear e+e− colliders

I Can reach highest energies
I Luminosity rises with energy
I Beam polarization possible

at all energies
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January 2020

Past colliders:
LEP2 (209GeV) peak luminosity

L = 1032cm−2s−1
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CLIC accelerator
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The Compact Linear Collider CLIC

Goal High gradient, efficient energy transfer (wall-plug to beam)
Means High-frequency RF maximizes field in cavities for given energy

Challenge Standard RF sources inefficient at high frequencies
CLIC solution Use standard low-frequency RF sources to accelerate a drive beam;

bring it to high frequency; transfer energy to main beam

Two-beam acceleration scheme
Dense, low energy drive beam RF power extracted to accelerate less particles per
bunch to higher energy per particle
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Layout of the CLIC accelerator complex

Drive beam high current (100A); lower energy (2.4 GeV); 12 GHz after CRs & loops
Power Extraction and Transfer Structures decelerate the beam → extract its energy
→ guide it via waveguides to the main beam accelerating structures
Main beam High energy up to 1.5 TeV; lower current 1.2 A
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Real-life test facilities

CTF3, the CLIC Test Facility
Successful demonstration of
I Drive beam generation
I RF power extraction
I Gradient up to 145 MV/m

C-band facilities
using CLIC technology (SwissFEL)

The two-beam module
Test module without beam for tests of
I thermo-mechanical effects
I engineering
I alignment and support
I vacuum, etc.

X-band test facility

test and development of high-gradient
accelerating structures
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CLIC staged implementation and map

Baseline: several energy stages
Stage

√
s [GeV] Lint [fb−1]

1 380 1000
top scan 350 100
2 1500 2500
3 3000 5000

⇒ stages can be adapted to possible discoveries at the LHC

Even further in the future: Upgrade with Plasma Wakefield technology possible
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Beam properties and experimental conditions
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CLIC bunch structure and experimental conditions

Energy stage(s) 380GeV 1.5 and 3TeV
Train repetition rate 50Hz 50Hz
Bunches / train 356 312
Train duration 178 ns 156 ns
Bunch separation 0.5 ns 0.5 ns
Duty cycle 0.00089% 0.00078%

I Linear colliders operate in bunch trains
I Bunch separation drives timing requirements of the detector

I 10 ns hit time-stamping in tracking
I 1 ns accuracy for calorimeter hits

I Low duty cycle → power pulsing of detectors possible
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Beam-beam interaction

High luminosities achieved by using extremely small beam sizes
I At 3TeV: bunch size σx = 40 nm, σy = 1nm, σz = 44µm
I Flat beams: high luminosity while minimizing electromagnetic fields
I Electromagnetic interaction of e+ and e− beams
; synchrotron radiation: beamstrahlung

I Collective (beam) effect; real photons

Beamstrahlung:
... modifies energy spectrum of the colliding e+e− pairs
... produces e±γ and γγ collisions
... drives detector requirements to a large extend
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Beam-induced backgrounds

Coherent and incoherent e+e− pairs

19k particles per bunch train (3TeV)
High occupancies → impact on detector granularity and design

γγ → hadrons

17k particles per bunch train (3TeV)
Main background in calorimeters and trackers → impact on
detector granularity, design and physics measurements

I Bunch trains with 312 bunches every 0.5 ns
I γγ → hadrons suppressed with timing cuts
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CLIC detector
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Detector requirements

+ Momentum resolution:
Higgs recoil mass, H → µµ,
leptons from BSM processes

σ(pT )
p2

T
≈ 2× 10−5GeV−1

+ Energy resolution for light quarks:
W/Z/H separation

σ(E)
E ≈ 3.5− 5% for E = 50...1000GeV

+ Impact parameter resolution:
b/c tagging, e.g. Higgs couplings

σ(d0) =
√

a2 + b2GeV2/(p2 sin3 θ),

a ≈ 5µm, b ≈ 15µm
+ Lepton identification, very forward e/γ tagging
+ Requirements from beam-induced backgrounds
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Overview of the detector

Designed for Particle Flow
Analysis and optimized for
CLIC environment
I 4 T B-field
I Vertex detector

(3 double layers)
I Large Silicon tracker

R=1.5m
I Highly granular

calorimeters:
I Si-W-ECAL

40 layers (22 X0)
I Scint-Fe-HCAL

60 layers (7.5 λI)

Precise timing for background
suppression

Ulrike Schnoor Physics at CLIC - 10.02.2021 22 / 54

https://clic.cern
https://home.cern


Particle Flow Calorimetry

Particle Flow principle
Average jet composition
I 60% charged particles
I 30% photons
I 10% neutral hadrons

Always use the best information
I charged particles → tracker
I photons → ECAL
I neutral hadrons → HCAL

http://www.hep.phy.cam.ac.uk/linearcollider/calorimetry/

I Traditional approach: jet energy measured
in ECAL and HCAL

I Particle Flow: Need very good spacial
resolution to avoid confusion ⇒ highly
granular calorimeters

⇒ Hardware + Software
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Timing resolution to suppress backgrounds

γγ → hadrons background: uniformly distributed in bunch train (unlike signal)
; can be efficiently suppressed with pT-dependent timing cuts on reconstructed
particles (= particle flow objects)

tt̄ event at 3TeV with background from γγ → hadrons from bunch train

1.2 TeV background
in the reconstruction window ≥ 10 ns
around physics event

100GeV background
after timing cuts
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Detector performance in full simulation

Full detector simulation

I Simulation based on Geant4
I Reconstruction chain including tracking,

particle flow, identification, flavor tagging

Tracking performance:
Momentum resolution
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DELPHES fast simulation for CLICdet

I Performance parameters based on full simulation of CLICdet documented in
arXiv:1812.07337

I Workflow: tracking and identification efficiencies, momentum and calorimeter
resolutions, jet clustering, flavor tagging, isolation, particle flow

I Linear collider jet algorithm VLC implemented in DELPHES
I Separate cards for the 3 energy stages to mimic effect of beam-induced

background on jet energy resolution
1909.12728

Validation compared to full simulation, for the three stages
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found for
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CLIC physics

Ulrike Schnoor Physics at CLIC - 10.02.2021 27 / 54



Simulation

Ingredients specific to linear collider Monte Carlo generation

I Beam polarization
I Hard processes for

e+e−, e±γ, γγ
I Simulation of ISR

I Capabilities to include beamstrahlung
from parametrization (e.g. CIRCE2) or
beam-beam event files

Main generator:
Whizard+Pythia

[1309.0372]I Correlations between beams are important
I Impact on cross section measurements and lab-frame observables
I Simulation with beam-beam interactions tool GuineaPig

Ulrike Schnoor Physics at CLIC - 10.02.2021 28 / 54

https://arxiv.org/abs/1309.0372v3
https://cds.cern.ch/record/382453
https://clic.cern
https://home.cern


Jet reconstruction at CLIC

hadron collider lepton collider
Avoid contamination from: pile-up beam-induced backgrounds
Boost w.r.t. detector frame: yes no/less
I Lepton colliders: [E , θ]; hadron colliders: [pT , y ]
I γγ → hadrons is forward peaked, reduce forward size for background robustness

VLC algorithm
Valencia Linear Collider
algorithm:
I Sequential

recombination
algorithm

I Modified distance
measures

Long. invariant =̂
generalized kT
[1404.4294]

Ulrike Schnoor Physics at CLIC - 10.02.2021 29 / 54

https://arxiv.org/abs/1404.4294
https://clic.cern
https://home.cern


CLIC physics in three stages

I 25-30 years physics programme
I Electron polarisation scenario:

Stage 1 I Higgs physics: single Higgs
production in HZ and VBF

I Top physics: tt̄ production and
threshold scan

⇒ precision far beyond that of the
HL-LHC

Stage 2 I ttH production
Stage 2,3 I Searches for new particles

I Precision EW measurements
providing indirect sensitivity to
new physics at higher scales

I Higgs self-coupling
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Top physics

tt̄ production

Stage 1: 380GeV close to
production maximum
→ large event samples

tt̄H production
Maximum σ near 800GeV
LC lumi higher at higher energy
→ CLIC Stage 2 close to maximum
ttH rate

VBF tt̄H

Benefits from highest energies

I Top mass
I Top electroweak couplings
I Rare top decays
I Top Yukawa coupling
I CP properties of t → H

coupling
I BSM in H/t sectors
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Top threshold scan

I Goal: Highest precision top mass measurement
I Dedicated runs of CLIC in several steps around

350GeV (tt threshold), total 100 fb−1
I Expected measurement precision on 1S mass :
≈ 50MeV
I Theoretical uncertainties: parametric

uncertainties from αs , perturbative QCD
uncertainty (dominant)

I Experimental uncertainties: beam energy and
luminosity spectrum, remaining background
predictions

I Statistical uncertainty: 20MeV
I CLIC beam parameters optimised for lower

beamstrahlung

CLICdp work in progress
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Higgs physics at CLIC

Stage 1: two production
mechanisms → reduces
uncertainties and guarantees
model-independence

Higgsstrahlung e+e− → ZH

dominant up to ≈ 450GeV

WW fusion e+e− → Hνe ν̄e

dominant above ≈ 450GeV

Double Higgs production
ZHH: second stage
VBF: benefits from highest energies
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Higgsstrahlung

Z → ee, µµ

I Identify HZ events from the Z recoil mass

M2 = s − 2Eqq̄
√

s + M2
qq̄

⇒ model-independent measurement of the
gHZZ coupling

Z → qq̄
Measurement of gHZZ ; substantial
improvement in precision possible

H → invisible
Find invisible Higgs decays in a
model-independent way
BR(H→inv.)<0.97% at 90%C.L. for CLIC at
350GeV
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All-hadronic HZ production at 3TeV CLIC

Full simulation study with Whizard+Pythia and CLICdet detector model
[arXiv:1911.02523]

Eur. Phys. J. C77, 475 (2017)

Higgsstrahlung at CLIC
plays a large role in the determination of
gHZZ at the 380GeV energy stage using the
recoil method

I Cross section much lower at 3TeV
I Promising impact of this channel on

BSM through Effective Field Theories
(EFT)

→ possible to make use of fully hadronic
channel to gain statistics?

→ possible to utilize boosted jets and jet
substructure?

I investigate HZ with Z → qq
I Goal: decay angles for EFT
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Analysis of full-hadronic HZ

I HZ → bb qq at
√

seff > 2500GeV
characterised by 2 high-energy
boosted fat jets, back-to-back in
azimuth, each containing 2 sub-jets

I Excellent jet mass resolution →
discriminate signal from background

I Jets: VLC β = γ = 1.0, R = 0.7,
exclusive clustering
n = 2 plus tight timing and pT cuts on
particle flow objects

I Correct for impact of neutrinos in b
decays by projecting the MET on the
boosted jets

I Use BDT based on jet observables and
substructure observables

jets ordered by mass: H jet higher mass
than Z jet
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Results for HZ at 3TeV
CLICdp-Note-2020-003

→ make use of fully hadronic channel to gain
statistics X

→ utilize boosted jets and jet substructure X
I Statistical uncertainty on the cross setion is 4.4%

for negative beam polarisation run (4000 fb−1) and
8.8% for positive beam polarisation run
(1000 fb−1) → combined 4.0%

I Statistics sufficient for extracting angular
observables for EFT study (θ1: angle between
positively charged quark and original Z direction in
the Z rest frame)
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Higgs properties: combined fits

I Global fits to σ×BR measurements in HZ and VBF production in various
channels → model-independent and model-dependent

Model-independent fit
Only possible at lepton colliders
I 11 free parameters including the total

width
I no assumptions on additional Higgs

decays

Eur. Phys. J. C 77, 475 (2017), updated 1812.01644
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Model-dependent global fit

Model-dependent:
I 10 free parameters
I Total width is sum of partial widths ⇒ No decays to non-SM particles
I Comparison to LHC results
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Higgs self-coupling at CLIC

I Self-coupling determines shape of the
Higgs potential

I Implications for vacuum metastability,
hierarchy problem, electroweak phase
transition, baryogenesis

Higgs self-coupling at linear colliders

I No HH production channel accessible
below 500GeV in e+e−

I Sizable ZHH production starts at√
s & 500GeV

I HHνeνe production grows with energy
I Influence of beam polarisation:

P(e−) = −80% (+80%): HHνeνe
rate modified by factor 1.8 (0.2)
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Analysis strategy

Full simulation study with Whizard+Pythia and CLIC_ILD detector model Eur.
Phys. J. C 80, 1010 (2020)

Higgs self-coupling at CLIC

I Measure W-boson fusion di-Higgs production HHνeνe

at 3TeV in bbbb and bbWW∗

I Extract gHHH from cross section and kinematics
I Take into account the smaller contributions from ZHH

and HHνeνe at 1.4TeV  [GeV]s
0 500 1000 1500 2000 2500 3000

 [f
b]

σ

3−10

2−10

1−10

1

ZHH

eνeνHH

Cross-section dependence on gHHH : →

⇒ Measurements of cross sections
can be used to extract
gHHH/gSM

HHH

I Ambiguity in HHνeνe
HHH

SM/g
HHH

g
0 1 2

 [f
b]

σ

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

CLICdp

 3TeVννHH

HHH

SM/g
HHH

g
0 1 2 3 4

 [f
b]

σ

0.05

0.1

0.15

0.2

0.25

0.3

CLICdp

ZHH 1.4 TeV

@CLIC: resolved by using 2 production modes and differential information
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Sensitive differential distributions

Differential distributions help to distinguish
different values of κHHH [1309.7038]
Shape differences in lower invariant mass
MHH region for
I different values of κHHH

I in particular, distinguish κHHH < 1
from κHHH > 1 even if similar cross
section (→ resolve ambiguity)

3TeV HHνeνe → bbbb analysis makes use
of differential information

Signal selection: 4 b-tagged jets, missing
ET , Boosted Decision Tree
Signal region:
Signal = 766 events
Background = 4527 events

Invariant mass of Higgs boson pair:
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Measure gHHH in di-Higgs events

From total rate of observed HH events

Measure the cross section,
extract the self-coupling:
∆σ ; ∆gHHH/gSM

HHH

⇒ -10%, + 11%
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From differential information in HHνeνe events

I Use two observables sensitive to gHHH : BDT
score and MHH

I Perform template fit for different gHHH

⇒ -8%, + 11% precision on gHHH
M(HH)[GeV]
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Global fit including Higgs self-coupling

I Model broad range of possible new
physics effects in Effective Field
Theory (EFT)

I HH production measurements can be
influenced by more BSM effects other
than modified Higgs self-coupling

I Other BSM effects can be constrained
in other measurements

⇒ estimate total effect: global SM-EFT
fit

⇒ at CLIC: global and individual
constraints on Higgs self-coupling very
similar due to the comprehensive,
high-precision Higgs programme at all
three energy stages

Results from: The CLIC Potential for New
Physics
[1812.02093, Sec. 2.2]

-0.5 0.0 0.5 1.0
0

2

4

6

8

10

δκλ

Δ
χ

2

CLIC 1.4TeV, δκλ only

CLIC 1.4TeV, global fit

CLIC 1.4TeV+3TeV, δκλ only

CLIC 1.4TeV+3TeV, global fit

CLIC 3TeV BDT + 1.4TeV, δκλ only

- - - - - CLICdp full-simulation analysis with
differential information
∆χ

2 = 1 corresponds to 68%C.L.
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Comparison to other proposed projects

I CLIC is earliest
project where
∆κHHH < 10% can
be reached

I Direct access and
two sizable
production modes at
CLIC

I Global and exclusive
constraints very
similar (see previous
slide)

from [1910.11775]
(κ3 = κHHH)
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Interpretation: Baryogenesis

I Shape of the Higgs potential connected to the phase transition of the early
universe from the unbroken to the broken electroweak symmetry

I Baryogenesis with a Higgs + singlet model: CLIC sensitive to the interesting
regions

singlet mass m2 and mixing angle θ

b3/v , a2: parameters of effective
potential

- - - CLIC 1.5TeV εb−tag = 90%
- - - constraint from ∆κHHH = 20% at 95% C.L.
- - - CLIC 3TeV di-Higgs searches εb−tag = 90%
— CLIC 3TeV di-Higgs searches εb−tag = 70%
◦ regions compatible with unitarity, perturbativity,
and absolute stability of the EW vacuum
 regions also compatible with baryogenesis
� Gray areas: indirect reach from other
measurements at
Stage 1 (dark), Stage 2 (middle), Stage 3 (light)

based on di-Higgs production at CLIC
[No, Spannowski: 1807.04284]
(using CLICdet Delphes card)
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Indirect BSM reach via precision measurements

CLIC high-energy stages at 1.5 and 3 TeV:
I increases VBF Higgs production
I adds ttH and HH production
I precision top-quark physics
I precision measurements of two-fermion and multi-boson processes
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Global sensitivity to BSM effects in EFT

Includes CLIC
measurements of

I Higgs
I Top
I WW
I e+e− → f f̄
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Long-lived particles at CLIC

I Long-lived particles signatures: displaced or disappearing tracks
I Challenging at the LHC due to pile-up, triggers
I 2 studies at CLIC:

I Hidden valley Higgs decay: displaced vertices
I Degenerate Higgsino Dark Matter: disappearing tracks

Hidden valley particles in
H → πvπv → bb̄bb̄

⇒ Require 5 hits for the tracking algorithm

95% C.L. limits on σ× BR
CLICdp-Note-2018-001
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Degenerate Higgsino Dark Matter

I Small mass difference between chargino and neutralino; mixing: pure Higgsino
I Process: chargino pair production where the χ±1 decay to a neutralino and a pion:

e+e− → χ̃+
1 χ̃
−
1 → χ̃0

1π
+χ̃0

1π
−

I Stub tracks from charged Higgsino with mass 1.05TeV and lifetime 6.9mm
I Whizard+Pythia, CLICdet at 3 TeV, with ISR and Beamspectrum included

stub track search:
I ≥ 4 hits in the tracking system
I disappearing within the tracking system
I no associated calorimeter entry
I prompt, isolated, minimum pT

I dE/dx requirement

[1812.02093]
Result: reach 1.05TeV = mass
compatible with thermal DM
density
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Summary and Outlook
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Summary

I CLIC: Compact Linear Collider = future
electron-positron collider at the Terascale

I Accelerator scheme demonstrated in various test
facilities

I CLICdet detector model adapted to CLIC high-energy
beam environment

I Baseline energy stages optimised for physics cases
I CLIC physics: High-precision top, Higgs, and

electroweak physics
→ e.g. Top threshold scan, Higgs self-coupling in HH

production

Ulrike Schnoor Physics at CLIC - 10.02.2021 52 / 54

https://clic.cern
https://home.cern


Outlook

I December 2018 - May 2020: European Strategy Update process
I CLIC timeline:
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Thanks and further reading

Yellow reports:
I The CLIC potential for new physics (CERN-2018-009-M, arXiv:1812.02093)
I CLIC 2018 Summary Report (CERN-2018-005-M, arXiv:1812.06018)
I CLIC Project Implementation Plan (CERN-2018-010-M, arXiv:1903.08655)
I Detector technologies for CLIC (CERN-2019-001, arXiv:1905.02520)
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Additional material

Additional Material
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Luminosity and beam-beam interaction

Luminosity

L ∼ N2

σxσy

Electromagnetic fields
B ∼ γN

σz (σx + σy )
⇒ prefer flat beams σy � σx

Bunch particles are strongly influenced by the fields: they are deflected and radiate
Beamstrahlung
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HH cross-section measurements at 1.4 and 3TeV

I HHνeνe production at 1.4 and 3TeV studied in full simulation
I ZHH production at 1.4TeV: assumptions based on full-simulation ZH study
I Minimal programme of CLIC for HH cross-section measurements:

1.4 TeV (L = 2.5 ab−1) 3TeV (L = 5ab−1)
3.6σ > 5σ for L & 700 fb−1

σ(HHνeνe ) ∆σ
σ

= 28% ∆σ
σ

= 7.3%
EVIDENCE OBSERVATION

σ(ZHH) 2.1σ 2.4σ
I direct acces
I two production modes

Current CLIC baseline has the second
energy stage at 1.5TeV instead

of 1.4TeV which is still used for the
full-simulation samples studied here
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Full di-Higgs programme

I Unique capability of CLIC:
measuring the Higgs
self-coupling to -8%, +
11% uncertainty

I Direct accessibility of HH
production at 1.4 and 3TeV

I Challenging measurements:
small cross section, forward
b-quarks

I Benefits from excellent
heavy flavor tagging, jet
energy resolution of CLIC
detector

CLIC double Higgs and Higgs self-coupling
programme:

Measurement 1.4TeV 3TeV
σ(HHνeνe ) 3.5σ > 5σ

EVIDENCE OBSERVATION
∆σ
σ

= 28% ∆σ
σ

= 7.3%
σ(ZHH) 2.1σ 2.4σ

gHHH/gSM
HHH 1.4TeV: 1.4TeV + 3TeV:

-29%, +67% -8%, +11%
rate-only analysis differential analysis

at 3TeV

+ Global EFT fit
+ BSM interpretation (e.g. Baryogenesis)

3TeV result for σ(ZHH) from CLICdp-Note-2020-003; all other
results from Eur. Phys. J. C 80, 1010 (2020)

⇒ Together with the high-precision in the couplings of the Higgs to SM particles at
CLIC, this measurement will test the nature of the electroweak symmetry breaking
mechanism
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Electroweak gauge boson scattering

I Make use of fully hadronic final states
(JER allows to separate W,Z)

I Example studies done in
e+e− → W +W−νν̄ and e+e− → ZZνν̄

Limits on anomalous quartic gauge
couplings via χ2 fit to sensitive observables:
MVV , cos θ∗VV , cos θ∗Jets

Limits on anomalous quartic gauge couplings

CLIC 3TeV
←

ATLAS
Run 1 →

HL-LHC:
Similar sensitivity
as CLIC 3TeV
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Higgs self-coupling and Higgs-gauge coupling HHWW

Several diagrams contribute to HHνeνe , incl.
HHWW vertex → modification parametrized as
κHHWW =gHHWW/gSM

HHWW :

Modifications of invariant di-Higgs mass:
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 = 1.0HHWWκ = 1.0; HHHκ

 = 1.2HHWWκ = 1.0; HHHκ

 = 1.0HHWWκ = 1.2; HHHκ

→ distinguish gHHH from gHHWW

2D limits
Simultaneous fit of gHHH and gHHWW
based on MHH in bins of the BDT
score plus the σ(ZHH) measurement
at 1.4TeV:
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References

I Electron-positron vs. hadron collider
http://www.quantumdiaries.org/wp-content/uploads/2015/05/
feynmanDiagram_DrellYan_wRad.png https://upload.wikimedia.org/
wikipedia/en/thumb/e/ea/Electron-positron-z_boson.svg/
1024px-Electron-positron-z_boson.svg.png

I Beam-induced backgrounds: γγ → hadrons diagram
http://cronodon.com/images/QCD_19.jpg
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