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Outline 
Developments related to setting limits (CLs, PCL, F-C, etc.) 

 CCGV arXiv:1105.3166 

Asymptotic formulae for distributions of test statistics based 
on the profile likelihood ratio 

 CCGV, arXiv:1007.1727, EPJC 71 (2011) 1-19 
Other recent developments 

 The Look-Elsewhere Effect, Gross and Vitells, 
 arXiv:1005.1891, Eur.Phys.J.C70:525-530,2010 
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Reminder about statistical tests 
Consider test of a parameter µ, e.g., proportional to cross section. 

Result of measurement is a set of numbers x. 

To define test of µ, specify critical region wµ, such that probability 
to find x ∈ wµ is not greater than α (the size or significance level): 

(Must use inequality since x may be discrete, so there may not  
exist a subset of the data space with probability of exactly α.) 

Equivalently define a p-value pµ such that the critical region  
corresponds to pµ < α.  

Often use, e.g., α = 0.05. 

If observe x ∈ wµ, reject µ. 
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Confidence interval from inversion of a test 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The confidence interval will by construction contain the 
 true value of µ with probability of at least 1 – α. 

The interval depends on the choice of the test, which is often based  
on considerations of power. 
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Power of a statistical test 
Where to define critical region?  Usually put this where the 
test has a high power with respect to an alternative hypothesis µ′. 

The power of the test of µ with respect to the alternative µ′ is 
the probability to reject µ if µ′ is true: 

(M = Mächtigkeit, 
мощность) 

p-value of hypothesized µ 
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Using alternative to choose critical region 
Roughly speaking, place the critical region where there is a low  
probability (α) to be found if the hypothesis being tested H0 (µ) is 
true, but high if a relevant alternative H1 (µ′) is true: 

More precisely, the Neyman-Pearson lemma states that the critical  
region for a test of H0 of size α with maximum power relative to 
H1 is such that the likelihood ratio  

  λ = f(x|H1) / f(x|H0)  

is higher everywhere inside the critical region than outside. 
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Choice of test for limits 
Suppose we want to ask what values of µ can be excluded on  
the grounds that the implied rate is too high relative to what is 
observed in the data. 

The interesting alternative in this context is µ = 0.   

The critical region giving the highest power for the test of µ relative 
to the alternative of µ = 0 thus contains low values of the data. 

 Test based on likelihood-ratio with respect to 
 one-sided alternative → upper limit. 
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Choice of test for limits (2) 
In other cases we want to exclude µ on the grounds that some other 
measure of incompatibility between it and the data exceeds some 
threshold. 

For example, the process may be known to exist, and thus µ = 0 
is no longer an interesting alternative. 

If the measure of incompatibility is taken to be the likelihood ratio 
with respect to a two-sided alternative, then the critical region can  
contain both high and low data values.   
       → unified intervals, G. Feldman, R. Cousins,  

 Phys. Rev. D 57, 3873–3889 (1998) 

The Big Debate is whether it is useful to regard small (or zero) 
µ as the relevant alternative, and thus carry out a one-sided test 
and report an upper limit.   
Support from professional statisticians on both sides of debate.  
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 

Assume the ni are Poisson distributed with expectation values 
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signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 

Assume the mi are Poisson distributed with expectation values 
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nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 
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maximizes L for 
Specified µ	



maximize L	



The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ use 

where 

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1-19 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 
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Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  Use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 



G. Cowan  Statistical methods for HEP / Birmingham 9 Nov 2011 16 

Ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure for upper limits. 

Unified intervals also effectively reduce spurious exclusion by 
the particular choice of critical region. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ = 1 (s+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     
f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (q|b)     f (q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Power Constrained Limits (PCL) 
CLs has been criticized because the exclusion is  based on a ratio 
of p-values, which did not appear to have a solid foundation. 

The coverage probability of the CLs upper limit is greater than the  
nominal CL = 1 - α by an amount that is generally not reported. 

Therefore we have proposed an alternative method for protecting 
against exclusion with little/no sensitivity, by regarding a value of 
µ to be excluded if: 

Here the measure of sensitivity is the power of the test of µ 
with respect to the alternative µ = 0: 

Cowan, Cranmer, Gross, Vitells,  
arXiv:1105.3166 
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Constructing PCL 
First compute the distribution under assumption of the  
background-only (µ = 0) hypothesis of the “usual” upper limit µup  
with no power constraint. 

The power of a test of µ with respect to µ = 0 is the fraction of 
times that µ is excluded (µup < µ): 

Find the smallest value of µ (µmin), such that the power is at 
least equal to the threshold Mmin. 

The Power-Constrained Limit is: 
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Choice of minimum power 
Choice of Mmin is convention.  Formally it should be large relative 
to α (5%).   Earlier we have proposed 

because in Gaussian example this means that one applies the 
power constraint if the observed limit fluctuates down by one  
standard deviation. 

For the Gaussian example, this gives µmin = 0.64σ, i.e., the lowest  
limit is similar to the intrinsic resolution of the measurement (σ). 

More recently for several reasons we have proposed Mmin = 0.5,  
(which gives µmin = 1.64σ), i.e., one imposes the power constraint  
if the unconstrained limit fluctuations below its median under the  
background-only hypothesis. 



G. Cowan  Statistical methods for HEP / Birmingham 9 Nov 2011 23 

Upper limit on µ for x ~ Gauss(µ,σ) with µ ≥ 0 

x 
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Comparison of reasons for (non)-exclusion 
Suppose we observe x = -1.   

µ = 1 excluded by diag. line, 
why not by other methods? 

PCL (Mmin=0.5):  Because 
the power of a test of µ = 1 
was below threshold. 

CLs:  Because the lack of 
sensitivity to µ = 1 led to 
reduced 1 – pb, hence CLs  
not less than α.  

F-C:  Because µ = 1 was not 
rejected in a test of size α 
(hence coverage correct). 
But the critical region 
corresponding to more than  
half of α is at high x. 

x 
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Coverage probability for Gaussian problem 
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More thoughts on power 
Synthese 36 (1):5 - 13. 

Birnbaum formulates a concept of statistical evidence 
in which he states: 

Ofer Vitells 
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More thoughts on power (2) 

This ratio is closely related to the exclusion criterion for CLs. 

Birnbaum arrives at the conclusion above from the likelihood 
principle, which must be related to why CLs for the Gaussian 
and Poisson problems agree with the Bayesian result. 

Ofer Vitells 
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The Look-Elsewhere Effect 
Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	



The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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p-value for fixed mass 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0. 

Gross and Vitells 
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p-value for floating mass 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 

Gross and Vitells 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Trials factor 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show that the “trials factor” can be  
approximated by 

where ‹N› = average number of “upcrossings” of -2lnL in fit range  
and 

is the significance for the fixed mass case. 

So we can either carry out the full floating-mass analysis (e.g. use  
MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 
The Gross-Vitells formula for the trials factor requires the 
mean number “upcrossings” of -2ln L in the fit range based 
on fixed threshold. 

estimate with MC 
at low reference 
level 

Gross and Vitells 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 
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Vitells and Gross, arXiv:1105.4355 



Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of sensitivity (“spurious exclusion”). 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 

35 G. Cowan  

Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 
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Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 
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Why 5 sigma (cont.)? 
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Summary and conclusions 
Exclusion limits effectively tell one what parameter values are 
(in)compatible with the data. 

 Frequentist:  exclude range where p-value of param < 5%. 
 Bayesian:  low prob. to find parameter in excluded region.  

In both cases one must choose the grounds on which the parameter 
is excluded (estimator too high, low?  low likelihood ratio?) .  

With a “usual” upper limit, a large downward fluctuation 
can lead to exclusion of parameter values to which one has 
little or no sensitivity (will happen 5% of the time). 

 “Solutions”:  CLs, PCL, F-C 

All of the solutions have well-defined properties, to which 
there may be some subjective assignment of importance. 



G. Cowan  Statistical methods for HEP / Birmingham 9 Nov 2011 39 

Extra slides 
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Wald approximation for profile likelihood ratio 
To find p-values, we need: 

For median significance under alternative, need: 
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Use approximation due to Wald (1943) 

sample size 
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Noncentral chi-square for -2lnλ(µ) 
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If we can neglect the O(1/√N) term, -2lnλ(µ) follows a 
 noncentral chi-square distribution for one degree of freedom 
with noncentrality parameter 

As a special case, if µ′ = µ then Λ = 0 and -2lnλ(µ) follows 
a chi-square distribution for one degree of freedom (Wilks). 
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The Asimov data set 
To estimate median value of -2lnλ(µ), consider special data set 
where all statistical fluctuations suppressed and ni, mi are replaced 
by their expectation values (the “Asimov” data set): 
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Asimov value of 
-2lnλ(µ) gives non- 
centrality param. Λ,	


or equivalently, σ.	
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Relation between test statistics and 	
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Distribution of q0 

Assuming the Wald approximation, we can write down the full  
distribution of q0 as 
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The special case µ′ = 0 is a “half chi-square” distribution:  
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

G. Cowan  Statistical methods for HEP / Birmingham 9 Nov 2011 

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 
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Relation between test statistics and       	
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Assuming the Wald approximation for – 2lnλ(µ), qµ and qµ  
both have monotonic relation with µ.  

~ 

And therefore quantiles 
of qµ, qµ can be obtained 
directly from those  
οf µ (which is Gaussian). ˆ 

̃ 

~ 
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Distribution of qµ	



Similar results for qµ	
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Monte Carlo test of asymptotic formula 	
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Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ	


level (q0 = 25) already for 
b ~ 20. 
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Monte Carlo test of asymptotic formulae 	
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For very low b, asymptotic 
formula underestimates Z0. 

Then slight overshoot before 
rapidly converging to MC 
value. 

Significance from asymptotic formula, here Z0 = √q0 = 4,  
compared to MC (true) value. 
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Monte Carlo test of asymptotic formulae 	
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Asymptotic  f (q0|1)  good already for fairly small samples. 

Median[q0|1] from Asimov data set; good agreement with MC. 
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Monte Carlo test of asymptotic formulae 	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 
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Discovery significance for n ~ Poisson(s + b) 

Consider again the case  where we observe n events , 
model as following Poisson distribution with mean s + b 
(assume b is known). 

1)   For an observed n, what is the significance Z0 with which 
     we would reject the s = 0 hypothesis? 

2)   What is the expected (or more precisely, median ) Z0 if  
     the true value of the signal rate is s? 
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Gaussian approximation for Poisson significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for Poisson significance 

Likelihood function for parameter s is 

or equivalently the log-likelihood is 

Find the maximum by setting  

gives the estimator for s:  
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Approximate Poisson significance (continued) 
The likelihood ratio statistic for testing s = 0 is 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z0|s+b], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(µ s+b),  median significance, 
assuming µ = 1, of the hypothesis µ = 0 

“Exact” values from MC, 
jumps due to discrete data. 

Asimov √q0,A good approx. 
for broad range of s, b. 

s/√b only good for s « b. 

CCGV, arXiv:1007.1727 
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PCL for upper limit with Gaussian measurement  

Suppose    ~ Gauss(µ, σ), goal is to set upper limit on µ. 

Define critical region for test of µ as 

This gives (unconstrained) upper limit: 

µ̂

inverse of standard Gaussian 
cumulative distribution 
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Power M0(µ) for Gaussian measurement  
The power of the test of µ with respect to the alternative µ′  = 0 is: 

standard Gaussian 
cumulative distribution 
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Spurious exclusion when µ fluctuates down 
Requiring the power be at least Mmin 

implies that the smallest µ to which one is sensitive is 

If one were to use the unconstrained limit, values of µ at or  
below µmin would be excluded if 

 ̂

That is, one excludes µ < µmin when the unconstrained limit  
fluctuates too far downward. 
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Treatment of nuisance parameters in PCL 
In most problems, the data distribution is not uniquely specified 
by µ but contains nuisance parameters θ. 

This makes it more difficult to construct an (unconstrained) 
interval with correct coverage probability for all values of θ, 
so sometimes approximate methods used (“profile construction”). 

More importantly for PCL, the power M0(µ) can depend on θ. 
So which value of θ to use to define the power? 

Since the power represents the probability to reject µ if the 
true value is µ = 0, to find the distribution of µup we take the  
values of θ that best agree with the data for µ = 0: 

May seem counterintuitive, since the measure of sensitivity 
now depends on the data.  We are simply using the data to choose 
the most appropriate value of θ where we quote the power. 
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Flip-flopping 
F-C pointed out that if one decides, based on the data, whether 
to report a one- or two-sided limit, then the stated coverage 
probability no longer holds.   

The problem (flip-flopping) is avoided in unified intervals. 

Whether the interval covers correctly or not depends on how 
one defines repetition of the experiment (the ensemble). 

Need to distinguish between: 

 (1) an idealized ensemble; 

  (2) a recipe one follows in real life that resembles (1).  
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Flip-flopping 
One could take, e.g.: 

Ideal:  always quote upper limit (∞ # of experiments). 

Real:  quote upper limit for as long as it is of any interest, i.e., 
until the existence of the effect is well established.  

The coverage for the idealized ensemble is correct. 

The question is whether the real ensemble departs from this 
during the period when the limit is of any interest as a guide 
in the search for the signal. 

Here the real and ideal only come into serious conflict if  you 
think the effect is well established (e.g. at the 5 sigma level) 
but then subsequently you find it not to be well established, 
so you need to go back to quoting upper limits. 
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Flip-flopping 
In an idealized ensemble, this situation could arise if, e.g., 
we take x ~ Gauss(µ, σ), and the true µ is one sigma 
below what we regard as the threshold needed to discover 
that µ is nonzero. 

Here flip-flopping gives undercoverage because one continually  
bounces above and below the discovery threshold.  The effect 
keeps going in and out of a state of being established.   

But this idealized ensemble does not resemble what happens 
in reality, where the discovery sensitivity continues to improve 
as more data are acquired. 


